【題目】(1)如圖,在數(shù)軸上有一小木棒AB,若平移木棒,使B落在A處,則A′所表示的數(shù)為 -1,若將A落在B處時(shí),則B′所表示的數(shù)14,它的兩個(gè)端點(diǎn)A、B所表示的數(shù)分別是 .

(2)老師給東東出了一道關(guān)于年齡的數(shù)學(xué)題:我像你那么小時(shí),你才兩歲;你像我那么大時(shí),我已經(jīng)44歲了,你猜我有多少歲?親愛的同學(xué),你能不能利用上一題的方法幫助小東求出老師的年齡呢?

【答案】(1)4;9;(2)30.

【解析】

(1)先求出A′B′的值,由題意及圖象可以得出每根小木棒的長(zhǎng)度為5,就可以求出A,B表示的數(shù);

(2)設(shè)老師和小東的年齡差為x歲,則老師今年是(44-x)歲,根據(jù)條件建立方程求出其解即可.

解:(1)由題意,得AB′=14(1)=15,AB=15÷3=5.

AB=AB=AB′=5,

A表示的數(shù)為1,

A表示的數(shù)為4,B表示的數(shù)為9.

故答案為:4,9;

(2)設(shè)老師和小東的年齡差為歲x,則老師今年是(44x)歲,由題意,得3x=442,解得:x=14.

∴老師今年的年齡是:4414=30.

答:老師今年的年齡是30.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC,∠C=90°,∠B=30°,以點(diǎn)A為圓心,任意長(zhǎng)為半徑畫弧分別交AB,AC于點(diǎn)MN,再分別以點(diǎn)M,N為圓心,大于MN的長(zhǎng)為半徑畫弧兩弧交于點(diǎn)P,連接AP并延長(zhǎng)交BC于點(diǎn)D,則下列說法:①AD∠BAC的平分線;②∠ADC=60°;③點(diǎn)DAB的垂直平分線上;④SDAC:SABC=1:3.其中正確的是__________________.(填所有正確說法的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,P是CD邊上一點(diǎn),且AP和BP分別平分∠DAB和∠CBA,若AD=5,AP=8,則△APB的周長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①是一個(gè)長(zhǎng)為2m、寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀把它均分成四個(gè)小長(zhǎng)方形,然后按圖②的形狀拼成一個(gè)正方形.

(1)你認(rèn)為圖②中的陰影部分的正方形的邊長(zhǎng)等于多少?

(2)請(qǐng)用兩種不同的方法求圖②中陰影部分的面積.

(3)觀察圖②你能寫出下列三個(gè)代數(shù)式之間的等量關(guān)系嗎?

代數(shù)式:(mn)2,(mn)2,mn.

(4)根據(jù)(3)題中的等量關(guān)系,解決如下問題:

已知ab=7,ab=5,求(ab)2的值.(寫出過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=3,AC=4,BC=5,P為邊BC上一動(dòng)點(diǎn),PE⊥ABE,PF⊥ACF,MEF中點(diǎn),則AM的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=10,∠B=60°,點(diǎn)D、E分別在AB、BC上,且BD=BE=4,將△BDE沿DE所在直線折疊得到△B′DE(點(diǎn)B′在四邊形ADEC內(nèi)),連接AB′,則AB′的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,過點(diǎn)D作對(duì)角線BD的垂線交BA的延長(zhǎng)線于點(diǎn)E.
(1)證明:四邊形ACDE是平行四邊形;
(2)若AC=8,BD=6,求△ADE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形兩邊的長(zhǎng)是3和4,第三邊的長(zhǎng)是方程 -12x+35=0的根,則該三角形的周長(zhǎng)為(  )
A.14
B.12
C.12或14
D.以上都不對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DBC上一點(diǎn),∠BAD=∠ABC,∠ADC=∠ACD,若∠BAC=63°,試求∠DAC、∠ADC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案