如圖所示,長方形ABCD在坐標(biāo)平面內(nèi),點A的坐標(biāo)是A(,1),且邊AB、CD與x軸平行,邊AD,BC與y軸平行,AB=4,AD=2.

(1)求B、C、D三點的坐標(biāo);

(2)怎樣平移,才能使A點與原點重合?

考點:

坐標(biāo)與圖形性質(zhì);坐標(biāo)與圖形變化-平移.

分析:

(1)根據(jù)矩形的對邊平行且相等求出BC到y(tǒng)軸的距離,CD到x軸的距離,然后寫出點B、C、D的坐標(biāo)即可;

(2)根據(jù)圖形寫出平移方法即可.

解答:

解:(1)∵A(,1),AB=4,AD=2,

∴BC到y(tǒng)軸的距離為4+,CD到x軸的距離2+1=3,

∴B(4+,1)、C(4+,3)、D(,3);(2)由圖可知,先向下平移1個單位,再向左平移個單位(或先向左平移平移個單位,再向下平移1個單位).

點評:

考查了坐標(biāo)與圖形性質(zhì),坐標(biāo)與圖形變化﹣平移,熟練掌握矩形的對邊平行且相等并準(zhǔn)確識圖是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,長方形花園ABCD,AB為4米,BC為6米,E為線段CD的中點,小鳥任意落下,則小鳥落在陰影區(qū)域的概率是多少?你是如何解釋的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

3、如圖所示,長方形花園ABCD中,AB=a,AD=b,花園中建有一條長方形道路LMPQ及一條平行四邊形道路RSTK,若LM=RS=c,則花園中可綠化部分的面積為
ab-bc-ac+c2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)某臺球桌為如圖所示的長方形ABCD,小球從A沿45°角擊出,恰好經(jīng)過5次碰撞到達(dá)B處.則AB:BC等于( 。
A、1:2B、2:3C、2:5D、3:5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)某學(xué)校要在圍墻旁建一個長方形的中藥材種植實習(xí)苗圃,苗圃的一邊靠圍墻(墻的長度不限),另三邊用木欄圍成,建成的苗圃為如圖所示的長方形ABCD.已知木欄總長為120米,設(shè)AB邊的長為x米,長方形ABCD的面積為S平方米.
(1)求S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍).當(dāng)x為何值時,S取得最值(請指出是最大值還是最小值)?并求出這個最值;
(2)學(xué)校計劃將苗圃內(nèi)藥材種植區(qū)域設(shè)計為如圖所示的兩個相外切的等圓,其圓心分別為O1和O2,且O1到AB、BC、AD的距離與O2到CD、BC、AD的距離都相等,并要求在苗圃內(nèi)藥材種植區(qū)域外四周至少要留夠0.5米寬的平直路面,以方便同學(xué)們參觀學(xué)習(xí).當(dāng)(l)中S取得最值時,請問這個設(shè)計是否可行?若可行,求出圓的半徑;若不可行,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

彈子盤為長方形ABCD,四角有洞,彈子從A出發(fā),路線與小正方形的邊成45°角,撞到邊界即反彈(如圖所示).AB=4,AD=3,彈子最后落入B洞.那么,當(dāng)AB=9,AD=8時,彈子最后落入
D
D
洞,在落入洞之前,撞擊BC邊
4
4
次.

查看答案和解析>>

同步練習(xí)冊答案