【題目】如圖,P(m,n)是拋物線y=﹣+1上任意一點(diǎn),l是過(guò)點(diǎn)(0,2)且與x軸平行的直線,過(guò)點(diǎn)P作直線PH⊥l,垂足為H,PH交x軸于Q.

(1)(探究)填空:當(dāng)m=0時(shí),OP=   ,PH=   ;當(dāng)m=4時(shí),OP=   ,PH=   

(2)(證明)對(duì)任意m,n,猜想OP與PH的大小關(guān)系,并證明你的猜想.

(3)(應(yīng)用)當(dāng)OP=OH,且m≠0時(shí),求P點(diǎn)的坐標(biāo).

【答案】(1)1,1,5,5;(2)OP=PH;(3)P(2,﹣2)或(﹣2,﹣2).

【解析】

(1)根據(jù)勾股定理,可得OP的長(zhǎng),根據(jù)點(diǎn)到直線的距離,可得可得PH的長(zhǎng);

(2)根據(jù)圖象上的點(diǎn)滿(mǎn)足函數(shù)解析式,可得點(diǎn)的坐標(biāo),根據(jù)勾股定理,可得PO的長(zhǎng),根據(jù)點(diǎn)到直線的距離,可得PH的長(zhǎng);

(3)當(dāng)OP=OH,且m≠0時(shí),由(2)可知OPH是等邊三角形,進(jìn)而求得∠HOQ=30°,解直角三角形即可求得.

解:(1)當(dāng)m=0時(shí),P(0,1),OP=1,PH=2﹣1=1;

當(dāng)m=4時(shí),y=﹣3,P(4,﹣3),OP==5,PH=2﹣(﹣3)=5,

故答案為:1,1,5,5;

(2)猜想:OP=PH,

證明:PHx軸與點(diǎn)Q,

Py=﹣x2+1上,

∴設(shè)P(m,﹣m2+1),PQ=|﹣x2+1|,OQ=|m|,

∵△OPQ是直角三角形,

OP====m2+1,

PH=2﹣yp=2+m2﹣1=m2+1

OP=PH.

(3)OP=PH,

∴當(dāng)OP=OH,三角形OPH是等邊三角形,

OQPH,

∴∠HOQ=30°,

OQ=HQ=2,

P點(diǎn)的橫坐標(biāo)為±2,

P(2,﹣2)或(﹣2,﹣2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】操作:如圖,在正方形 ABCD 中,P 是 CD 上一動(dòng)點(diǎn)(與 C,D 不重合,使三角板的直角頂點(diǎn)與點(diǎn) P 重合,并且一條直角邊始終經(jīng)過(guò)點(diǎn) B,另一直角邊與正方形的某一邊所在直線交于點(diǎn) E.

(1)根據(jù)操作結(jié)果,畫(huà)出符合條件的圖形;

(2)觀察所畫(huà)圖形,寫(xiě)出一個(gè)與△BPC 相似的三角形,并說(shuō)明理由;

(3)當(dāng)點(diǎn) P 位于 CD 的中點(diǎn)時(shí),直接寫(xiě)出(2)中兩對(duì)相似三角形的相似比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+cx軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,直線BC的解析式為y=﹣x+6.

(1)求拋物線的解析式;

(2)點(diǎn)M為線段BC上方拋物線上的任意一點(diǎn),連接MB,MC,點(diǎn)N為拋物線對(duì)稱(chēng)軸上任意一點(diǎn),當(dāng)M到直線BC的距離最大時(shí),求點(diǎn)M的坐標(biāo)及MN+NB的最小值;

(3)(2)中,點(diǎn)M到直線BC的距離最大時(shí),連接OMBC于點(diǎn)E,將原拋物線沿射線OM平移,平移后的拋物線記為y′,當(dāng)y′經(jīng)過(guò)點(diǎn)M時(shí),它的對(duì)稱(chēng)軸與x軸的交點(diǎn)記為H.將△BOE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°至△BO1E1,再將△BO1E1沿著直線O1H平移,得到△B1O2E2,在平面內(nèi)是否存在點(diǎn)F,使以點(diǎn)C,H,B1,F(xiàn)為頂點(diǎn)的四邊形是以B1H為邊的菱形.若存在,直接寫(xiě)出點(diǎn)B1的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,中,于點(diǎn),于點(diǎn),連接

1)若,,,求的周長(zhǎng);

2)如圖2,若,,的角平分線于點(diǎn),求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,邊上的一點(diǎn),,交邊于,,,

1是等腰三角形嗎?請(qǐng)說(shuō)明理由;

2)連結(jié),當(dāng) 度時(shí),是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2x+cx軸交A(﹣1,0),B兩點(diǎn),與y軸交于點(diǎn)C(0,3),拋物線的頂點(diǎn)為點(diǎn)E.

(1)求拋物線的解析式;

(2)經(jīng)過(guò)B,C兩點(diǎn)的直線交拋物線的對(duì)稱(chēng)軸于點(diǎn)D,點(diǎn)P為直線BC上方拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)E時(shí),求△PCD的面積;

(3)點(diǎn)N在拋物線對(duì)稱(chēng)軸上,點(diǎn)Mx軸上,是否存在這樣的點(diǎn)M與點(diǎn)N,使以M,N,C,B為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo)(不寫(xiě)求解過(guò)程);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格中,每個(gè)小正方形的邊長(zhǎng)都是單位1,△ABC在平面直角坐標(biāo)系中的位置如圖.

1)畫(huà)出將△ABC向右平移2個(gè)單位得到△A1B1C1

2)畫(huà)出將△ABC繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)90°得到的△A2B2C2

3)在x軸上找一點(diǎn)P,滿(mǎn)足點(diǎn)P到點(diǎn)C1C2距離之和最小,并求出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)a<0)圖象與x軸的交點(diǎn)A、B的橫坐標(biāo)分別為﹣3,1,與y軸交于點(diǎn)C,下面四個(gè)結(jié)論:

①16a﹣4b+c<0;②P(﹣5,y1),Q,y2)是函數(shù)圖象上的兩點(diǎn),則y1y2;③a=﹣c;④ABC是等腰三角形,則b=﹣.其中正確的有______(請(qǐng)將結(jié)論正確的序號(hào)全部填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)圖象的頂點(diǎn)在原點(diǎn)O,經(jīng)過(guò)點(diǎn)A1,);點(diǎn)F0,1)在y軸上.直線y=﹣1y軸交于點(diǎn)H

1)求二次函數(shù)的解析式;

2)點(diǎn)P是(1)中圖象上的點(diǎn),過(guò)點(diǎn)Px軸的垂線與直線y=﹣1交于點(diǎn)M,求證:FM平分∠OFP;

3)當(dāng)△FPM是等邊三角形時(shí),求P點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案