精英家教網 > 初中數學 > 題目詳情
(2010•聊城)建于明洪武七年(1374年),高度33米的光岳樓是目前我國現存的最高大、最古老的樓閣之一(如圖①).喜愛數學實踐活動的小偉,在30米高的光岳樓頂樓P處,利用自制測角儀測得正南方向商店A點的俯角為60°,又測得其正前方的海源閣賓館B點的俯角為30°(如圖②).求商店與海源閣賓館之間的距離(結果保留根號).

【答案】分析:利用30°的正切值可求得OB長,利用60°的正切值可求得OA長.OB-OA即為商店與海源閣賓館之間的距離.
解答:解:∵兩條水平線是平行的,
∴∠B=30°,∠PAO=60°.
∵PO=30,∠POA=90°,
∴OB==30
OA==10
∴AB=OB-OA=20
點評:解決本題的關鍵是借助俯角構造直角三角形,運用三角函數定義表示與所求線段相關的線段的長度.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

建于明洪武七年(1374年),高度33米的光岳樓是目前我國現存的最高大、最古老的樓閣之一(如圖①).喜愛數學實踐活動的小偉,在30米高的光岳樓頂樓P處,利用自制測角儀測得正南方向商店A點的俯角為60°,又測得其正前方的海源閣賓館B點的俯角為30°(如圖②).求商店與海源閣賓館之間的距離(結果保留根號).
精英家教網

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《二次函數》(08)(解析版) 題型:解答題

(2010•聊城)如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應的函數關系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標;
(3)設點P為拋物線的對稱軸x=1上的一動點,求使∠PCB=90°的點P的坐標.

查看答案和解析>>

科目:初中數學 來源:2010年山東省聊城市中考數學試卷(解析版) 題型:解答題

(2010•聊城)如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應的函數關系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標;
(3)設點P為拋物線的對稱軸x=1上的一動點,求使∠PCB=90°的點P的坐標.

查看答案和解析>>

科目:初中數學 來源:2010年山東省聊城市中考數學試卷(解析版) 題型:解答題

(2010•聊城)建于明洪武七年(1374年),高度33米的光岳樓是目前我國現存的最高大、最古老的樓閣之一(如圖①).喜愛數學實踐活動的小偉,在30米高的光岳樓頂樓P處,利用自制測角儀測得正南方向商店A點的俯角為60°,又測得其正前方的海源閣賓館B點的俯角為30°(如圖②).求商店與海源閣賓館之間的距離(結果保留根號).

查看答案和解析>>

同步練習冊答案