【題目】如圖所示,△ABC是等邊三角形,DBC的中點,以點D為旋轉(zhuǎn)中心,把△ABC順時針旋轉(zhuǎn)60°后所成的圖形應是下圖(注:虛線代表三角形原來的位置,實線代表旋轉(zhuǎn)后的位置)中的( ).

A. B. C. D.

【答案】D

【解析】

根據(jù)等邊三角形的性質(zhì)得∠B=∠ACB=60°,再利用旋轉(zhuǎn)的性質(zhì)得∠A′B′C′=60°,∠BDB′=60°,DB=DB′,△BDB′為等邊三角形,點B′在AB上,同理可得點C在A′C′上,則可畫出圖形,然后進行判斷.

∵△ABC是等邊三角形,

∴∠B=∠ACB=60

∵以點D為旋轉(zhuǎn)中心,把△ABC順時針旋轉(zhuǎn)60得到△A′B′C′,而DBC的中點,

∴∠A′B′C′=60,∠BDB′=60,DB=DB′,

∴點B′在AB上,

同理可得點CA′C′上,如圖

故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線

拋物線

頂點坐標

x軸交點坐標

y軸交點坐標

拋物線

A____

B____

(1,0)

(0,-3)

(1)補全表中A,B兩點的坐標,并在所給的平面直角坐標系中,畫出拋物線

(2)結(jié)合圖象回答

x的取值范圍為________時,yx的增大而增大;

x________時,;

時,y的取值范圍________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ABC,∠ACB的平分線相交于點F,過點F作DE∥BC,交AB于D,交AC于E,那么下列結(jié)論正確的是:①△BDF,△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周長為AB+AC;④BD=CE.(  )

A. ③④ B. ①② C. ①②③ D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點Bx軸的正半軸上,AO=AB,∠OAB=90°OB=12,點CD均在邊OB上,且∠CAD=45°,若ACO的面積等于ABO面積的,則點D的坐標為 _______ 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為的正方形中,請畫出以為一個頂點,另外兩個頂點在正方形的邊上,且含邊長為的所有大小不同的等腰三角形.(要求:只要畫出示意圖,并在所畫等腰三角形長為的邊上標注數(shù)字

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2﹣kx﹣2=0.

(1)求證:方程總有兩個不相等的實數(shù)根;

(2)已知方程的一個根為x=+1,求k的值及另一個根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,平分.

1)如圖①,若點,,求的度數(shù);

2)如圖②,若點,求證:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】己知二次函數(shù)函數(shù)與自變量的部分對應值如下表:

1

0

1

2

3

4

10

5

2

1

2

5

(1)求該二次函數(shù)的解析式;

(2)為何值時,有最小值,最小值是多少?

(3),兩點都在該函數(shù)的圖像上,試比較的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:

一般地,當α、β為任意角時,tan(α+β)與tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=

根據(jù)以上材料,解決下列問題:

(1)求tan75°的值;

(2)都勻文峰塔,原名文筆塔,始建于明代萬歷年間,系五層木塔.文峰塔的木塔年久傾毀,僅存塔基.1983年,人民政府撥款維修文峰塔,成為今天的七層六面實心石塔(圖1),小華想用所學知識來測量該鐵塔的高度,如圖2,已知小華站在離塔底中心A5.7米的C處,測得塔頂?shù)难鼋菫?/span>75°,小華的眼睛離地面的距離DC1.72米,請幫助小華求出文峰塔AB的高度.(精確到1米,參考數(shù)據(jù)≈1.732,≈1.414)

查看答案和解析>>

同步練習冊答案