已知:拋物線C1:y=-2x2+bx-6與拋物線C2關(guān)于原點對稱,拋物線C1與x軸分別交于A(1,0),B(m,0),頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側(cè)),頂點為N.
(1)求m的值;
(2)求拋物線C2的解析式;
(3)若拋物線C1與拋物線C2同時以每秒1個單位的速度沿x軸方向分別向左、向右運動,此時記A,B,C,D,M,N在某一時刻的新位置分別為A′,B′,C′,D′,M′,N′,當點A′與點D′重合時運動停止.在運動過程中,四邊形B′M′C′N′能否形成矩形?若能,求出此時運動時間t(秒)的值,若不能,說明理由.
(1)∵拋物線 y=-2x2+bx-6過點 A(1,0)
∴0=-2+b-6,
∴b=8,
∴拋物線 C1的解析式為 y=-2x2+8x-6=-2(x-2)2+2,
∴M(2,2),
令y=0,則-2x2+8x-6=0,
解這個方程,得 x1=1,x2=3,
∴m=3;

(2)由題意,拋物線 過點C(-3,0),D(-1,0),頂點坐標為:N(-2,-2),
故設(shè)解析式為:y=a(x+2)2-2,將C(-3,0),帶入得出:a=2,
∴拋物線C2 的解析式為:y=2(x+2)2-2=2x2+8x+6;

(3)過點M 作 MH⊥x軸于點H,
若四邊形是矩形B′M′C′N′,則 OB′=OM′,
由題意,設(shè)M′(2-t,2)B′(3-t,0),則H (2-t,0),
在Rt△M′OH中,OH2+M′H2=OM′2=OB′2
∴(t-2)2+22=(t-3)2,
解得t=
1
2

∴t=
1
2
秒時,四邊形B′M′C′N′是 矩形.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,已知點A坐標為(2,4),直線x=2與x軸相交于點B,連接OA,拋物線y=x2從點O沿OA方向平移,與直線x=2交于點P,頂點M到A點時停止移動.
請?zhí)剿鳎菏欠翊嬖谶@樣的點M,使得線段PB最短;若存在,請求出此時點M的坐標.若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系中,O是坐標原點,A(3,0)、B(m,
6
5
)是以O(shè)A為直徑的⊙M上的兩點,且tan∠AOB=
1
2
,BH⊥x軸,垂足為H
(1)求H點的坐標;
(2)求圖象經(jīng)過A、B、O三點的二次函數(shù)的解析式;
(3)設(shè)點C為(2)中的二次函數(shù)圖象的頂點,問經(jīng)過B、C兩點的直線是否與⊙M相切,請說明理由.
注:拋物線y=ax2+bx+c(c≠0)的頂點為(-
b
2a
4ac-b2
4a
)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

拋物線y=ax2+bx+3經(jīng)過點A、B、C,已知A(-1,0),B(3,0).
(1)求拋物線的解析式;
(2)如圖1,P為線段BC上一點,過點P作y軸平行線,交拋物線于點D,當△BDC的面積最大時,求點P的坐標;
(3)如圖2,在(2)的條件下,延長DP交x軸于點F,M(m,0)是x軸上一動點,N是線段DF上一點,當△BDC的面積最大時,若∠MNC=90°,請直接寫出實數(shù)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx經(jīng)過點A(-3,-3)和點P(t,0),且t≠0.
(1)若t=-4,求拋物線的解析式,并指出此時拋物線的開口方向;
(2)如圖,拋物線y=ax2+bx的對稱軸經(jīng)過點A,觀察圖象并回答:
y的最小值=______;
t的值=______;
當x>-3時,y隨x的增大而______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,拋物線y=a(x-2)2-2的頂點為C,拋物線與x軸交于A,B兩點(其中A點在B點的左邊),CH⊥AB于H,且tan∠ACH=
1
2

(1)求拋物線的解析式;
(2)在坐標平面內(nèi)是否存在一點D,使得以O(shè)、B、C、D為頂點的四邊形是等腰梯形?若存在,求所有的符合條件的D點的坐標;若不存在,請說明理由;
(3)如圖2,將(1)中的拋物線平移,使其頂點在y軸的正半軸上,在y軸上是否存在一點M,使得平移后的拋物線上的任意一點P到x軸的距離與P點到M的距離相等?若存在,求出M點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,⊙M是以點M(4,0)為圓心,5個單位長度為半徑的圓.⊙M與x軸交于點A、B(A在B的左側(cè)),⊙M與y軸的正半軸交于點C.
求:(1)點A、B、C的坐標;
(2)經(jīng)過點A、B、C三點的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,一座拋物線型拱橋,橋下水面寬度是4m,拱高是2m,當水面下降1m后,水面寬度是多少?(
6
=2.45,結(jié)果保留0.1m)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2-2ax與直線l:y=ax(a>0)的交點除了原點O外,還相交于另一點A.
(1)分別求出這個拋物線的頂點、點A的坐標(可用含a的式子表示);
(2)將拋物線y=ax2-2ax沿著x軸對折(翻轉(zhuǎn)180°)后,得到的圖象叫做“新拋物線”,則:①當a=1時,求這個“新拋物線”的解析式,并判斷這個“新拋物線”的頂點是否在直線l上;②在①的條件下,“新拋物線”上是否存在一點P,使點P到直線l的距離等于線段OA的
1
24
?若存在,請直接寫出滿足條件的點P坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案