【題目】如圖①,在正方形ABCD中,F(xiàn)是對(duì)角線(xiàn)AC上的一點(diǎn),點(diǎn)E在BC的延長(zhǎng)線(xiàn)上,且BF=EF.
(1)求證:BF=DF;
(2)求證:∠DFE=90°;
(3)如果把正方形ABCD改為菱形,其他條件不變(如圖②),當(dāng)∠ABC=50°時(shí),∠DFE=度.

【答案】
(1)證明:在正方形ABCD中,BC=DC,∠BCF=∠DCF=45°,

∵在△BCF和△DCF中,

,

∴△BCF≌△DCF(SAS);

∴BF=DF


(2)證明:∵BF=EF,

∴∠FBE=∠FEB,

又∵∠FBE=∠FDC,

∴∠FEB=∠FDC,

又∵∠DGF=∠EGC,

∴∠DFG=∠ECG=90°,

即∠DFE=90°


(3)50
【解析】(3)證明:由(1)知,△BCF≌△DCF, ∴∠CBF=∠CDF,
∵EE=FB,
∴∠CBF=∠E,
∵∠DGF=∠EGC(對(duì)頂角相等),
∴180°﹣∠DGF﹣∠CDF=180°﹣∠EGC﹣∠E,
即∠DFE=∠DCE,
∵AB∥CD,
∴∠DCE=∠ABC,
∴∠DFE=∠ABC=50°,
所以答案是:50.
【考點(diǎn)精析】利用菱形的性質(zhì)和正方形的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知菱形的四條邊都相等;菱形的對(duì)角線(xiàn)互相垂直,并且每一條對(duì)角線(xiàn)平分一組對(duì)角;菱形被兩條對(duì)角線(xiàn)分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線(xiàn)長(zhǎng)的積的一半;正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線(xiàn)相等,并且互相垂直平分,每條對(duì)角線(xiàn)平分一組對(duì)角;正方形的一條對(duì)角線(xiàn)把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線(xiàn)與邊的夾角是45o;正方形的兩條對(duì)角線(xiàn)把這個(gè)正方形分成四個(gè)全等的等腰直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校6名教師和234名學(xué)生集體外出活動(dòng),準(zhǔn)備租用45座大車(chē)或30座小車(chē).若租用1輛大車(chē)2輛小車(chē)共需租車(chē)費(fèi)1000元;若租用2輛大車(chē)一輛小車(chē)共需租車(chē)費(fèi)1100元.
(1)求大、小車(chē)每輛的租車(chē)費(fèi)各是多少元?
(2)若每輛車(chē)上至少要有一名教師,且總租車(chē)費(fèi)用不超過(guò)2300元,求最省錢(qián)的租車(chē)方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的袋子中裝有除顏色外其余均相同的5個(gè)小球,其中紅球3個(gè)(記為A1,A2,A3),黑球2個(gè)(記為B1,B2).

(1)若先從袋中取出m(m>0)個(gè)紅球,再?gòu)拇又须S機(jī)摸出1個(gè)球,將“摸出黑球”記為事件A,填空:①若A為必然事件,則m的值為 ②若A為隨機(jī)事件,則m的取值為

(2)若從袋中隨機(jī)摸出2個(gè)球,正好紅球、黑球各1個(gè),用樹(shù)狀圖或列表法求這個(gè)事件的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2+2x+m=0的有兩個(gè)相等的實(shí)數(shù)根,則m為( )
A.2
B.﹣2
C.1
D.﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年中國(guó)與一帶一路沿線(xiàn)國(guó)家進(jìn)出口總額約13000 0000 0000美元,用科學(xué)記數(shù)法表示這個(gè)進(jìn)出口總額為_____美元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列式子從左到右的變形是因式分解的是(  )

A. a2+4a-21=a(a+4)-21

B. (a-3)(a+7)=a2+4a-21

C. a2+4a-21=(a-3)(a+7)

D. a2+4a-21=(a+2)2-25

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x=2是關(guān)于x的方程3x+a=0的一個(gè)解,則a的值是( )
A.﹣6
B.﹣3
C.﹣4
D.﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】去括號(hào),并合并同類(lèi)項(xiàng):3x+1﹣2(4﹣x)=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系內(nèi)一點(diǎn)P(﹣2,3)關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)是( )
A.(3,﹣2)
B.(2,3)
C.(﹣2,﹣3)
D.(2,﹣3)

查看答案和解析>>

同步練習(xí)冊(cè)答案