如圖,在平面直角坐標系xOy中,函數(shù)y=
4x
(x>0)
的圖象與一次函數(shù)y=kx-k的圖象的交點為A(m,2).
(1)求一次函數(shù)的解析式;
(2)設一次函數(shù)y=kx-k的圖象與k軸交于點B,若P是y軸上一點,且滿足B,C的面積是3,求點P的坐標.
分析:(1)先把A(m,2)代入反比例解析式確定A點坐標,然后把A點坐標代入一次函數(shù)中求出k,從而確定一次函數(shù)的解析式;
(2)先確定B點與C點坐標,然后根據(jù)三角形面積公式確定P點坐標.
解答:解:(1)將A(m,2)代入y=
4
x
,得2m=4,解得 m=2,
∴A點坐標為(2,2),
將A(2,2)代入y=kx-k,得2=2k-k,解得k=2,
∴一次函數(shù)的解析式為y=2x-2;
(2)把x=0代入y=2x-2得y=-2;把y=0代入y=2x-2得2x-2=0,解得x=1,
∴B點坐標為(0,-2),C點坐標為(1,0),
設P點坐標為(0,y),
1
2
×|y+2|×1=3,解得y=-8或y=4,
∴P點坐標為(4,0)或(0,-8).
點評:本題考查了反比例函數(shù)與一次函數(shù)的交點問題:反比例函數(shù)與一次函數(shù)圖象的交點坐標滿足兩函數(shù)解析式.也考查了待定系數(shù)法求函數(shù)解析式以及觀察函數(shù)圖象的能力.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習冊答案