【題目】在平面直角坐標(biāo)系xOy,函數(shù)(x>0)的圖象與直線l1:交于點(diǎn)A,與直線l2x=k交于點(diǎn)B.直線l1l2交于點(diǎn)C

(1) 當(dāng)點(diǎn)A的橫坐標(biāo)為1時(shí),則此時(shí)k的值為 _______;

(2) 橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn) 記函數(shù)(x>0) 的圖像在點(diǎn)A、B之間的部分與線段AC,BC圍成的區(qū)域(不含邊界)W

①當(dāng)k=3時(shí),結(jié)合函數(shù)圖像,則區(qū)域W內(nèi)的整點(diǎn)個(gè)數(shù)是_________;

②若區(qū)域W內(nèi)恰有1個(gè)整點(diǎn),結(jié)合函數(shù)圖象,直接寫(xiě)出k的取值范圍:___________

【答案】(1) ;(2)3;②.

【解析】

1)將A代入函數(shù)(x>0)l1:,即可求出;

2)①畫(huà)出當(dāng)k=3時(shí),相應(yīng)的圖象,由圖得到整點(diǎn)的個(gè)數(shù);

②分為點(diǎn)C在曲線(x>0)下方、上方兩種情況畫(huà)出符合題意的圖象,據(jù)圖寫(xiě)出k需要滿足的條件.

解:設(shè)點(diǎn),∵A上,


點(diǎn)在函數(shù)的圖象上,
;

故答案為:.

(2)①當(dāng)k=3時(shí),作圖如下,

觀察圖象,區(qū)域W內(nèi)的整點(diǎn)個(gè)數(shù)是3;

②當(dāng)點(diǎn)C在曲線(x>0)下方,如下圖,

區(qū)域W內(nèi)唯一的1個(gè)整點(diǎn)為(1,1),

只需滿足:當(dāng)時(shí),

;

當(dāng)點(diǎn)C在曲線(x>0)上方如下圖,

區(qū)域W內(nèi)唯一的1個(gè)整點(diǎn)為(2,2),

只需滿足:且當(dāng)時(shí),,,

;

綜上所述:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題提出

如圖①,、是⊙的兩條弦, , 的中點(diǎn), ,垂足為

求證:

小敏在解答此題時(shí),利用了補(bǔ)短法進(jìn)行證明,她的方法如下:

如圖②,延長(zhǎng),使,連接、、、

(請(qǐng)你在下面的空白處完成小敏的證明過(guò)程.)

推廣運(yùn)用

如圖③,等邊內(nèi)接于⊙, 上一點(diǎn), , ,垂足為,則的周長(zhǎng)是__________

拓展研究

如圖④,若將問(wèn)題提出中的的中點(diǎn)改成的中點(diǎn)其余條件不變,這一結(jié)論還成立嗎?若成立,請(qǐng)說(shuō)明理由;若不成立,寫(xiě)出、三者之間存在的關(guān)系并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)被平均分成3個(gè)扇形,分別標(biāo)有12,3三個(gè)數(shù)字.小王和小李各轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤(pán)為一次游戲當(dāng)每次轉(zhuǎn)盤(pán)停止后,指針?biāo)干刃蝺?nèi)的數(shù)為各自所得的數(shù)一次游戲結(jié)束后得到一組數(shù)(若指針指在分界線時(shí)重轉(zhuǎn))

1)請(qǐng)你用樹(shù)狀圖或列表的方法表示出每次游戲可能出現(xiàn)的所有結(jié)果;

2)求每次游戲后得到的一組數(shù)恰好是方程x2﹣4x+3=0的解的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CB=CA,∠ACB=90°,點(diǎn)D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過(guò)點(diǎn)F作FG⊥CA,交CA的延長(zhǎng)線于點(diǎn)G,連接FB,交DE于點(diǎn)Q,給出以下結(jié)論:①AC=FG;②S△FAB∶S四邊形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正確結(jié)論的個(gè)數(shù)是(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(6分)△ABC與△A′B′C′在平面直角坐標(biāo)系中的位置如圖.

(1)分別寫(xiě)出下列各點(diǎn)的坐標(biāo):A′ ; B′ ;C′ ;

(2)說(shuō)明△A′B′C′由△ABC經(jīng)過(guò)怎樣的平移得到?

(3)若點(diǎn)P(a,b)是△ABC內(nèi)部一點(diǎn),則平移后△A′B′C′內(nèi)的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)為 ;

(4)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,有若干個(gè)整數(shù)點(diǎn),其順序按圖中“→”方向排列,如(0,1),(0,2),(12),(1,3),(0,3),(﹣1,3,根據(jù)這個(gè)規(guī)律探索可得,第90個(gè)點(diǎn)的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為a的正方形中挖去一個(gè)邊長(zhǎng)為b的小正方形(ab)(如圖甲),把余下的部分拼成一個(gè)長(zhǎng)方形(如圖乙),根據(jù)兩個(gè)圖形中陰影部分的面積相等,可以驗(yàn)證(  )

A. a+2b)(ab)=a2+ab2b2

B. a2b2=(a+b)(ab

C. a+b2a2+2ab+b2

D. ab2a22ab+b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在正方形ABCD中,以AB為邊向正方形外作等邊三角形ABE,連接CE、BD交于點(diǎn)G,連接AG,那么∠AGD的底數(shù)是______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù) yl= x ( x 0 ) , x > 0 )的圖象如圖所示,則結(jié)論: 兩函數(shù)圖象的交點(diǎn)A的坐標(biāo)為(3 ,3 ) 當(dāng) x > 3 時(shí), 當(dāng) x 1時(shí), BC = 8

當(dāng) x 逐漸增大時(shí), yl 隨著 x 的增大而增大,y2隨著 x 的增大而減。渲姓_結(jié)論的序號(hào)是_ .

查看答案和解析>>

同步練習(xí)冊(cè)答案