【題目】在平面直角坐標(biāo)系xOy中,函數(shù)(x>0)的圖象與直線l1:交于點(diǎn)A,與直線l2:x=k交于點(diǎn)B.直線l1與l2交于點(diǎn)C.
(1) 當(dāng)點(diǎn)A的橫坐標(biāo)為1時(shí),則此時(shí)k的值為 _______;
(2) 橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn). 記函數(shù)(x>0) 的圖像在點(diǎn)A、B之間的部分與線段AC,BC圍成的區(qū)域(不含邊界)為W.
①當(dāng)k=3時(shí),結(jié)合函數(shù)圖像,則區(qū)域W內(nèi)的整點(diǎn)個(gè)數(shù)是_________;
②若區(qū)域W內(nèi)恰有1個(gè)整點(diǎn),結(jié)合函數(shù)圖象,直接寫(xiě)出k的取值范圍:___________.
【答案】(1) ;(2)①3;②或.
【解析】
(1)將A代入函數(shù)(x>0)與l1:,即可求出;
(2)①畫(huà)出當(dāng)k=3時(shí),相應(yīng)的圖象,由圖得到整點(diǎn)的個(gè)數(shù);
②分為點(diǎn)C在曲線(x>0)下方、上方兩種情況畫(huà)出符合題意的圖象,據(jù)圖寫(xiě)出k需要滿足的條件.
解:設(shè)點(diǎn),∵A在上,
.
.
點(diǎn)在函數(shù)的圖象上,
;
故答案為:.
(2)①當(dāng)k=3時(shí),作圖如下,
觀察圖象,區(qū)域W內(nèi)的整點(diǎn)個(gè)數(shù)是3;
②當(dāng)點(diǎn)C在曲線(x>0)下方,如下圖,
區(qū)域W內(nèi)唯一的1個(gè)整點(diǎn)為(1,1),
只需滿足:當(dāng)時(shí),,
∴;
當(dāng)點(diǎn)C在曲線(x>0)上方,如下圖,
區(qū)域W內(nèi)唯一的1個(gè)整點(diǎn)為(2,2),
只需滿足:且當(dāng)時(shí),,,
∴;
綜上所述:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題提出
如圖①,、是⊙的兩條弦, , 是的中點(diǎn), ,垂足為.
求證: .
小敏在解答此題時(shí),利用了“補(bǔ)短法”進(jìn)行證明,她的方法如下:
如圖②,延長(zhǎng)至,使,連接、、、、.
(請(qǐng)你在下面的空白處完成小敏的證明過(guò)程.)
推廣運(yùn)用
如圖③,等邊內(nèi)接于⊙, . 是上一點(diǎn), , ,垂足為,則的周長(zhǎng)是__________.
拓展研究
如圖④,若將“問(wèn)題提出”中的“是的中點(diǎn)”改成“是的中點(diǎn)”,其余條件不變,“”這一結(jié)論還成立嗎?若成立,請(qǐng)說(shuō)明理由;若不成立,寫(xiě)出、、三者之間存在的關(guān)系并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)被平均分成3個(gè)扇形,分別標(biāo)有1,2,3三個(gè)數(shù)字.小王和小李各轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤(pán)為一次游戲,當(dāng)每次轉(zhuǎn)盤(pán)停止后,指針?biāo)干刃蝺?nèi)的數(shù)為各自所得的數(shù),一次游戲結(jié)束后得到一組數(shù)(若指針指在分界線時(shí)重轉(zhuǎn)).
(1)請(qǐng)你用樹(shù)狀圖或列表的方法表示出每次游戲可能出現(xiàn)的所有結(jié)果;
(2)求每次游戲后得到的一組數(shù)恰好是方程x2﹣4x+3=0的解的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CB=CA,∠ACB=90°,點(diǎn)D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過(guò)點(diǎn)F作FG⊥CA,交CA的延長(zhǎng)線于點(diǎn)G,連接FB,交DE于點(diǎn)Q,給出以下結(jié)論:①AC=FG;②S△FAB∶S四邊形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(6分)△ABC與△A′B′C′在平面直角坐標(biāo)系中的位置如圖.
(1)分別寫(xiě)出下列各點(diǎn)的坐標(biāo):A′ ; B′ ;C′ ;
(2)說(shuō)明△A′B′C′由△ABC經(jīng)過(guò)怎樣的平移得到? .
(3)若點(diǎn)P(a,b)是△ABC內(nèi)部一點(diǎn),則平移后△A′B′C′內(nèi)的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)為 ;
(4)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,有若干個(gè)整數(shù)點(diǎn),其順序按圖中“→”方向排列,如(0,1),(0,2),(1,2),(1,3),(0,3),(﹣1,3)…,根據(jù)這個(gè)規(guī)律探索可得,第90個(gè)點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為a的正方形中挖去一個(gè)邊長(zhǎng)為b的小正方形(a>b)(如圖甲),把余下的部分拼成一個(gè)長(zhǎng)方形(如圖乙),根據(jù)兩個(gè)圖形中陰影部分的面積相等,可以驗(yàn)證( )
A. (a+2b)(a﹣b)=a2+ab﹣2b2
B. a2﹣b2=(a+b)(a﹣b)
C. (a+b)2=a2+2ab+b2
D. (a﹣b)2=a2﹣2ab+b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在正方形ABCD中,以AB為邊向正方形外作等邊三角形ABE,連接CE、BD交于點(diǎn)G,連接AG,那么∠AGD的底數(shù)是______度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù) yl= x ( x ≥0 ) , ( x > 0 )的圖象如圖所示,則結(jié)論: ① 兩函數(shù)圖象的交點(diǎn)A的坐標(biāo)為(3 ,3 ) ② 當(dāng) x > 3 時(shí), ③ 當(dāng) x =1時(shí), BC = 8
④ 當(dāng) x 逐漸增大時(shí), yl 隨著 x 的增大而增大,y2隨著 x 的增大而減。渲姓_結(jié)論的序號(hào)是_ .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com