【題目】如圖,△ABC的周長(zhǎng)為26,點(diǎn)D,E都在邊BC上,∠ABC的平分線垂直于AE,垂足為Q,∠ACB的平分線垂直于AD,垂足為P,若BC=10,則PQ的長(zhǎng)為( )

A.
B.
C.3
D.4

【答案】C
【解析】∵BQ平分∠ABC,BQ⊥AE,∴△BAE是等腰三角形。
同理△CAD是等腰三角形。
∴點(diǎn)Q是AE中點(diǎn),點(diǎn)P是AD中點(diǎn)(三線合一)!郟Q是△ADE的中位線。
∵BE+CD=AB+AC=26﹣BC=26﹣10=16,∴DE=BE+CD﹣BC=6。
∴PQ=DE=3.故選C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解三角形中位線定理的相關(guān)知識(shí),掌握連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:
(1)2x2﹣x=1
(2)x2+4x+2=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E,F(xiàn),G,H分別是矩形ABCD各邊的中點(diǎn),AB=6,BC=8,則四邊形EFGH的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點(diǎn)E.若BF=6,AB=5,則AE的長(zhǎng)為( 。

A.4
B.6
C.8
D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF.

(1)試說明AC=EF;
(2)求證:四邊形ADFE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CB=CA,∠ACB=90°,點(diǎn)D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點(diǎn)F作FG⊥CA,交CA的延長(zhǎng)線于點(diǎn)G,連接FB,交DE于點(diǎn)Q,給出以下結(jié)論:
①AC=FG;②SFAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQAC,
其中正確的結(jié)論的個(gè)數(shù)是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,點(diǎn)E為BC上一點(diǎn),F(xiàn)為DE的中點(diǎn),且∠BFC=90°.

(1)當(dāng)E為BC中點(diǎn)時(shí),求證:△BCF≌△DEC;
(2)當(dāng)BE=2EC時(shí),求 的值;
(3)設(shè)CE=1,BE=n,作點(diǎn)C關(guān)于DE的對(duì)稱點(diǎn)C′,連結(jié)FC′,AF,若點(diǎn)C′到AF的距離是 ,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】工人師傅要將邊長(zhǎng)為4m和3m的平行四邊形框架固定,現(xiàn)有下列長(zhǎng)度的木棒,在木棒的兩端釘上達(dá)到固定平行四邊形的目的,不符合要求的是( 。
A.2m
B.3m
C.4m
D.8m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,OE⊥CD,OF平分∠BOD.
(1)圖中除直角外,請(qǐng)寫出一對(duì)相等的角嗎:(寫出符合的一對(duì)即可)
(2)如果∠AOE=26°,求∠BOD和∠COF的度數(shù).(所求的角均小于平角)

查看答案和解析>>

同步練習(xí)冊(cè)答案