【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.
①當(dāng)點(diǎn)D在AC上時(shí),如圖(1),線段BD、CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?直接寫出你猜想的結(jié)論;
②將圖(1)中的△ADE的位置改變一下,如圖(2),使∠BAD=∠CAE,其他條件不變,則線段BD,CE又有怎樣的數(shù)量關(guān)系和位置關(guān)系?請(qǐng)說明理由.
【答案】①BD=CE,BD⊥CE;②BD=CE,BD⊥CE,理由見解析
【解析】
試題分析:(1)BD=CE,BD⊥CE,延長BD與EC交于點(diǎn)F,可以證明△ACE≌△ADB,可得BD=CE,且∠BFE=90°,即可解答;
(2)BD=CE,BD⊥CE,延長BD交AC于F,交CE于H,可以證明△ACE≌△ADB,可得BD=CE,利用三角形的內(nèi)角和為180°,即可得到BD⊥CE.
解:(1)BD=CE,BD⊥CE;
如圖(1),延長BD與EC交于點(diǎn)F,
在△ACE和△ADB中,
,
∴△ACE≌△ADB(SAS),
∴BD=CE,∠AEC=∠ADB,
∵∠ADB+∠ABD=90°
∴∠ABD+∠AEC=90°
∴∠BFE=90°,
∴BD⊥CE.
(2)結(jié)論:BD=CE,BD⊥CE,
理由如下:∵∠BAC=∠DAE=90°
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
即∠BAD=∠CAE,
在△ABD與△ACE中,
∴△ABD≌△ACE(SAS)
∴BD=CE,
如圖(2),延長BD交AC于F,交CE于H.
在△ABF與△HCF中,
∵∠ABF=∠HCF,∠AFB=∠HFC
∴∠CHF=∠BAF=90°
∴BD⊥CE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如3+2=(1+)2.善于思考的小明進(jìn)行了以下探索:
設(shè)a+b=(m+n)2(其中a、b、m、n均為整數(shù)),則有a+b=m2+2n2+2mn.
∴a=m2+2n2,b=2mn.這樣小明就找到了一種把類似a+b的式子化為平方式的方法.
請(qǐng)你仿照小明的方法探索并解決下列問題:
(1)當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b=(m+n)2,用含m、n的式子分別表示a、b,得:a= ,b= ;
(2)利用所探索的結(jié)論,找一組正整數(shù)a、b、m、n填空: ;
(3)若a+4=(m+n)2,且a、m、n均為正整數(shù),求a的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南寧市青秀區(qū)新開發(fā)某工程準(zhǔn)備招標(biāo),指揮部現(xiàn)接到甲、乙兩個(gè)工程隊(duì)的投標(biāo)書,從投標(biāo)書中得知:乙隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)是甲隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)的2倍;該工程若由甲隊(duì)先做6天,剩下的工程再由甲、乙兩隊(duì)合作16天可以完成.
(1)求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需要多少天?
(2)已知甲隊(duì)每天的施工費(fèi)用為0.67萬元,乙隊(duì)每天的施工費(fèi)用為0.33萬元,該工程預(yù)算的施工費(fèi)用為19萬元.為縮短工期,擬安排甲、乙兩隊(duì)同時(shí)開工合作完成這項(xiàng)工程,問:該工程預(yù)算的施工費(fèi)用是否夠用?若不夠用,需要追加預(yù)算多少萬元?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列要求,解答相關(guān)問題.
(1)請(qǐng)補(bǔ)全以下求不等式﹣2x2﹣4x>0的解集的過程.
①構(gòu)造函數(shù),畫出圖象:根據(jù)不等式特征構(gòu)造二次函數(shù)y=﹣2x2﹣4x;并在下面的坐標(biāo)系中(圖1)畫出二次函數(shù)y=﹣2x2﹣4x的圖象(只畫出圖象即可).
②求得界點(diǎn),標(biāo)示所需,當(dāng)y=0時(shí),求得方程﹣2x2﹣4x=0的解為 ;并用鋸齒線標(biāo)示出函數(shù)y=﹣2x2﹣4x圖象中y>0的部分.
③借助圖象,寫出解集:由所標(biāo)示圖象,可得不等式﹣2x2﹣4x>0的解集為﹣2<x<0.請(qǐng)你利用上面求一元一次不等式解集的過程,求不等式x2﹣2x+1≥4的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】密蘇里州圣路易斯拱門是座雄偉壯觀的拋物線形的建筑物,是美國最高的獨(dú)自挺立的紀(jì)念碑,如圖.拱門的地面寬度為200米,兩側(cè)距地面高150米處各有一個(gè)觀光窗,兩窗的水平距離為100米,求拱門的最大高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們已經(jīng)學(xué)習(xí)過了“等腰三角形的判定定理”,
(1)默寫等腰三角形的判定定理(寫成如果……那么……的形式):_______________________
該定理可以簡寫為:____________________
(2)請(qǐng)你結(jié)合圖形,寫出已知、求證,并寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,定義點(diǎn)P(x,y)的變換點(diǎn)為P′(x+y,x﹣y).
(1)如圖1,如果⊙O的半徑為,
①請(qǐng)你判斷M(2,0),N(﹣2,﹣1)兩個(gè)點(diǎn)的變換點(diǎn)與⊙O的位置關(guān)系;
②若點(diǎn)P在直線y=x+2上,點(diǎn)P的變換點(diǎn)P′在⊙O的內(nèi),求點(diǎn)P橫坐標(biāo)的取值范圍.
(2)如圖2,如果⊙O的半徑為1,且P的變換點(diǎn)P′在直線y=﹣2x+6上,求點(diǎn)P與⊙O上任意一點(diǎn)距離的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O為△ABC的外接圓,直線l與⊙O相切與點(diǎn)P,且l∥BC.
(1)請(qǐng)僅用無刻度的直尺,在⊙O中畫出一條弦,使這條弦將△ABC分成面積相等的兩部分(保留作圖痕跡,不寫作法);
(2)請(qǐng)寫出證明△ABC被所作弦分成的兩部分面積相等的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按規(guī)律在橫線上填上適當(dāng)?shù)臄?shù),﹣23,﹣18,﹣13,_____,_____,_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com