4、如圖,在等腰Rt△ABC的斜邊AB上取兩點M,N,使∠MCN=45°,記AM=m,MN=x,DN=n,則以線段x、m、n為邊長的三角形的形狀是( 。
分析:把△ACN繞C點順時針旋轉(zhuǎn)45°,得△CBD,這樣∠ACM+∠BCN=45°就集中成一個與∠MCN相等的角,在一條直線上的m、x、n集中為△DNB,只需判定△DNB的形狀即可.
解答:
解:△ACM≌△BCD,
∠ACM=∠BCD,CM=CD,∠MCN=∠NCD=45°,
又∵CN=CN,
∴△MNC≌△DNC,MN=ND,AM=BD=m,
又∠DBN=45°+45°=90°,
∴n2+m2=x2
故選B.
點評:本題考查等腰直角三角形的性質(zhì),難度較大,注意掌握旋下列情形常實施旋轉(zhuǎn)變換:(1)圖形中出現(xiàn)等邊三角形或正方形,把旋轉(zhuǎn)角分別定為60°、90°;(2)圖形中有線段的中點,將圖形繞中點旋轉(zhuǎn)180°,構(gòu)造中心對稱全等三角形;(3)圖形中出現(xiàn)有公共端點的線段,將含有相等線段的圖形繞公共端點,旋轉(zhuǎn)兩相等線段的夾角后與另一相等線段重合.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點,點D,E分別在AC,BC邊上運動,且保持AD=CE.連接DE,DF,EF.在此運動變化的過程中,下列結(jié)論:
①△DFE是等腰直角三角形;
②四邊形CDFE不可能為正方形,
③DE長度的最小值為4;
④四邊形CDFE的面積保持不變;
⑤△CDE面積的最大值為8.
其中正確的結(jié)論是(  )
A、①②③B、①④⑤C、①③④D、③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點,點D、E分別在AC、BC邊精英家教網(wǎng)上運動,且保持AD=CE.連接DE、DF、EF.
①求證:△DFE是等腰直角三角形;
②在此運動變化的過程中,四邊形CDFE的面積是否保持不變?試說明理由.
③求△CDE面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等腰Rt△ABC中,∠C=90°,∠CBD=30°,則
ADDC
=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等腰Rt△ABC中,∠ACB=90°,CA=CB,點M、N是AB上任意兩點,且∠MCN=45°,點T為AB的中點.以下結(jié)論:①AB=
2
AC;②CM2+TN2=NC2+MT2;③AM2+BN2=MN2;④S△CAM+S△CBN=S△CMN.其中正確結(jié)論的序號是( 。
A、①②③④B、只有①②③
C、只有①③④D、只有②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰Rt△ABC中,∠C=90°,AC=8
2
,F(xiàn)是AB邊上的中點,點D、E分別在AC、BC邊上運動,且保持AD=CE.連接DE、DF、EF.
(1)在此運動變化的過程中,△DFE是
等腰直角
等腰直角
三角形;
(2)若AD=
2
,求△DFE的面積.

查看答案和解析>>

同步練習冊答案