【題目】如圖在平面直角坐標(biāo)系中,O 是坐標(biāo)原點(diǎn),長方形 OACB 的頂點(diǎn) A,B 分別在 x,y 軸上,已知 OA=3, 點(diǎn) D 為 y 軸上一點(diǎn),其坐標(biāo)為(0,1),CD=5,點(diǎn) P 從點(diǎn) A 出發(fā)以每秒 1 個單位的速度沿線段 A﹣C﹣B 的方向運(yùn)動,當(dāng)點(diǎn) P 與點(diǎn) B 重合時(shí)停止運(yùn)動,運(yùn)動時(shí)間為 t 秒
(1)求 B,C 兩點(diǎn)坐標(biāo);
(2)①求△OPD 的面積 S 關(guān)于 t 的函數(shù)關(guān)系式;
②當(dāng)點(diǎn) D 關(guān)于 OP 的對稱點(diǎn) E 落在 x 軸上時(shí),求點(diǎn) E 的坐標(biāo);
(3)在(2)②情況下,直線 OP 上求一點(diǎn) F,使 FE+FA 最。
【答案】(1) B(0,5),C(3,5);(2)①S=-t+4(t≥0);②(1,10);(3)見解析.
【解析】
(1)由四邊形OACB是矩形,得到BC=OA=3,在Rt△BCD中,由勾股定理得到BD==4,OB=5,從而求得點(diǎn)的坐標(biāo);
(2)①當(dāng)點(diǎn)P在AC上時(shí),OD=1,BC=3,S=,當(dāng)點(diǎn)在BC上時(shí),OD=1,BP=5+3-t=8-t,得到S=×1×(8-t)=-t+4;
②當(dāng)點(diǎn)D關(guān)于OP的對稱點(diǎn)落在x軸上時(shí),得到點(diǎn)D的對稱點(diǎn)是(1,0),求得E(1,0);
(3)由點(diǎn)D、E關(guān)于OP對稱,連接AD交OP于F,找到點(diǎn)F,從而確定AD的長度就是AF+EF的最小值,在Rt△AOD中,由勾股定理求得AD=,即AF+EF的最小值=.
(1)如圖1,
∵四邊形OACB是矩形,
∴BC=OA=3,
在Rt△BCD中,∵CD=5,BC=3,
∴BD==4,
∴OB=5,
∴B(0,5),C(3,5);
(2)①當(dāng)點(diǎn)P在AC上時(shí),OD=1,BC=3,
∴S=,
當(dāng)點(diǎn)在BC上時(shí),OD=1,BP=5+3-t=8-t,
∴S=×1×(8-t)=-t+4;(t≥0)
②當(dāng)點(diǎn)D關(guān)于OP的對稱點(diǎn)落在x軸上時(shí),點(diǎn)D的對稱點(diǎn)是(1,0),
∴E(1,0);
(3)如圖2
∵點(diǎn)D、E關(guān)于OP對稱,連接AD交OP于F,
則AD的長度就是AF+EF的最小值,則點(diǎn)F即為所求.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是工人師傅用同一種材料制成的金屬框架,已知,,,其中的周長為24cm,,則制成整個金屬框架所需這種材料的總長度為( )
A. 45cm B. 48cm C. 51cm D. 54cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠(yuǎn)流長:中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績均不低于50分.為了更好地了解本次大賽的成績分布情況,隨機(jī)抽取了其中200名學(xué)生的成績(成績x取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:
成績x/分 | 頻數(shù) | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 20 | 0.10 |
70≤x<80 | 30 | b |
80≤x<90 | a | 0.30 |
90≤x≤100 | 80 | 0.40 |
請根據(jù)所給信息,解答下列問題:
(1)a= , b=;
(2)請補(bǔ)全頻數(shù)分布直方圖;
(3)這次比賽成績的中位數(shù)會落在分?jǐn)?shù)段;
(4)若成績在90分以上(包括90分)的為“優(yōu)”等,則該校參加這次比賽的3000名學(xué)生中成績“優(yōu)”等約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“中國夢”是中華民族每一個人的夢,也是每一個中小學(xué)生的夢,各中小學(xué)開展經(jīng)典誦讀活動,無疑是“中國夢”教育這一宏大樂章里的響亮音符,學(xué)校在經(jīng)典誦讀活動中,對全校學(xué)生用A、B、C、D四個等級進(jìn)行評價(jià),現(xiàn)從中抽取若干個學(xué)生進(jìn)行調(diào)查,繪制出了兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)圖中信息解答下列問題:
(1)共抽取了多少個學(xué)生進(jìn)行調(diào)查?
(2)將圖甲中的折線統(tǒng)計(jì)圖補(bǔ)充完整.
(3)求出圖乙中B等級所占圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果種植場今年收獲的“妃子笑”和“無核Ⅰ號”兩種荔枝共3200 千克,全部售出后賣了30400 元.已知“妃子笑”荔枝每千克售價(jià)8 元,“無核Ⅰ號”荔枝每千克售價(jià)12 元,問該種植場今年這兩種荔枝各收獲多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠ACB=90°,O是斜邊AB的中點(diǎn),點(diǎn)D、E分別在直角邊AC、BC上,且∠DOE=90°,DE交OC于點(diǎn)P,則下列結(jié)論:①圖中全等的三角形只有兩對;②△ABC的面積等于四邊形CDOE面積的2倍;③OD=OE;④CE+CD=BC,其中正確的結(jié)論有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正比例函數(shù) 的圖象與反比例函數(shù) 的圖象交于A、B兩點(diǎn),點(diǎn)C在x軸負(fù)半軸上,AC=AO,△ACO的面積為12.
(1)求k的值;
(2)根據(jù)圖象,當(dāng) 時(shí),寫出自變量 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某長途汽車客運(yùn)公司規(guī)定旅客可免費(fèi)攜帶一定質(zhì)量的行李,當(dāng)行李的質(zhì)量超過規(guī)定時(shí),需付的行李費(fèi) (元)是行李質(zhì)量 ( )的一次函數(shù).已知行李質(zhì)量為 時(shí)需付行李費(fèi) 元,行李質(zhì)量為 時(shí)需付行李費(fèi) 元.
(1)當(dāng)行李的質(zhì)量 超過規(guī)定時(shí),求 與 之間的函數(shù)表達(dá)式;
(2)求旅客最多可免費(fèi)攜帶行李的質(zhì)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著地鐵和共享單車的發(fā)展,“地鐵+單車”已成為很多市民出行的選擇,李華從文化宮站出發(fā),先乘坐地鐵,準(zhǔn)備在離家較近的A,B,C,D,E中的某一站出地鐵,再騎共享單車回家,設(shè)他出地鐵的站點(diǎn)與文化宮距離為x(單位:千米),乘坐地鐵的時(shí)間y1(單位:分鐘)是關(guān)于x的一次函數(shù),其關(guān)系如下表:
地鐵站 | A | B | C | D | E |
x(千米) | 8 | 9 | 10 | 11.5 | 13 |
y1(分鐘) | 18 | 20 | 22 | 25 | 28 |
(1)求y1關(guān)于x的函數(shù)表達(dá)式;
(2)李華騎單車的時(shí)間(單位:分鐘)也受x的影響,其關(guān)系可以用y2= x2﹣11x+78來描述,請問:李華應(yīng)選擇在那一站出地鐵,才能使他從文化宮回到家所需的時(shí)間最短?并求出最短時(shí)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com