【題目】如圖1,在平面直角坐標(biāo)系中,直線分別交x軸,y軸于A,B兩點(diǎn),點(diǎn)C為OB的中點(diǎn),點(diǎn)D在第二象限,且四邊形AOCD為矩形(有一個(gè)角是直角的平行四邊形).
(1)直接寫出點(diǎn)A,B的坐標(biāo),并求直線AB與CD交點(diǎn)E的坐標(biāo);
(2)動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿線段CD以每秒1個(gè)單位長度的速度向終點(diǎn)D運(yùn)動(dòng);同時(shí)動(dòng)點(diǎn)N從點(diǎn)A出發(fā),沿線段AO以每秒1個(gè)單位長度的速度向終點(diǎn)O運(yùn)動(dòng),過點(diǎn)P作PHOA,垂足為H,連接NP.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
①若△NPH的面積為1,求t的值;
②點(diǎn)Q是點(diǎn)B關(guān)于點(diǎn)A的對(duì)稱點(diǎn),問BPPHHQ是否有最小值,如果有,直接寫出相應(yīng)的點(diǎn)P的坐標(biāo);如果沒有,請(qǐng)說明理由.
【答案】(1)A(﹣3,0),B(0,4),E(﹣1.5,2);(2)①t=1或2;(2)P(﹣2,2).
【解析】
(1)分別令x與y等于0,即可求出點(diǎn)A與點(diǎn)B的坐標(biāo),由四邊形AOCD為矩形,可知:CD∥x軸,進(jìn)而可知:D、C、E三點(diǎn)的縱坐標(biāo)相同,由點(diǎn)C為OB的中點(diǎn),可求點(diǎn)C的坐標(biāo),然后將點(diǎn)C的縱坐標(biāo)代入直線y=x+4即可求直線AB與CD交點(diǎn)E的坐標(biāo);
(2)①分兩種情況討論,第一種情況:當(dāng)0<t<2時(shí);第二種情況:當(dāng)2<t≤6時(shí);
②由點(diǎn)Q是點(diǎn)B關(guān)于點(diǎn)A的對(duì)稱點(diǎn),先求出點(diǎn)Q的坐標(biāo),然后連接PB,CH,可得四邊形PHCB是平行四邊形,進(jìn)而可得:PB=CH,進(jìn)而可將BP+PH+HQ轉(zhuǎn)化為CH+HQ+2,然后根據(jù)兩點(diǎn)之間線段最短可知:當(dāng)點(diǎn)C,H,Q在同一直線上時(shí),CH+HQ的值最小,然后求出直線CQ的關(guān)系式,進(jìn)而可求出直線CQ與x軸的交點(diǎn)H的坐標(biāo),從而即可求出點(diǎn)P的坐標(biāo)
(1)∵直線y=x+4分別交x軸,y軸于A,B兩點(diǎn),
∴令x=0得:y=4,
令y=0得:x=-3,
∴A(-3,0),B(0,4),
∴OA=3,OB=4,
∵點(diǎn)C為OB的中點(diǎn),
∴OC=2,
∴C(0,2),
∵四邊形AOCD為矩形,
∴OA=CD=3,OC=AD=2,CD∥OA(x軸),
∴D、C、E三點(diǎn)的縱坐標(biāo)相同,
∴點(diǎn)E的縱坐標(biāo)為2,將y=2代入直線y=x+4得:x=-1.5,
∴E(-1.5,2);
(2)①分兩種情況討論:
第一種情況當(dāng)0≤t<1.5時(shí),如圖1,
根據(jù)題意可知:經(jīng)過t秒,CP=t,AN=t,HO=CP=t,PH=OC=2,
∴NH=3-2t,
∵S△NPH=PHNH,且△NPH的面積為1,
∴×2×(3-2t)=1,
解得:t=1;
第二種情況:當(dāng)1.5≤t≤3時(shí),如圖2,
根據(jù)題意可知:經(jīng)過t秒,CP=t,AN=t,HO=CP=t,PH=OC=2,
∴AH=3-t,
∴HN=AN-AH=t-(3-t)=2t-3,
∵S△NPH=PHNH,且△NPH的面積為1,
∴×2×(2t-3)=1,
解得:t=2;
∴當(dāng)t=1或2時(shí),存在△NPH的面積為1;
②BP+PH+HQ有最小值,
連接PB,CH,HQ,則四邊形PHCB是平行四邊形,如圖3,
∵四邊形PHCB是平行四邊形,
∴PB=CH,
∴BP+PH+HQ=CH+HQ+2,
∵BP+PH+HQ有最小值,即CH+HQ+2有最小值,
∴只需CH+HQ最小即可,
∵兩點(diǎn)之間線段最短,
∴當(dāng)點(diǎn)C,H,Q在同一直線上時(shí),CH+HQ的值最小,
過點(diǎn)Q作QM⊥y軸,垂足為M,
∵點(diǎn)Q是點(diǎn)B關(guān)于點(diǎn)A的對(duì)稱點(diǎn),
∴OA是△BQM的中位線,
∴QM=2OA=6,OM=OB=4,
∴Q(-6,-4),
設(shè)直線CQ的關(guān)系式為:y=kx+b,
將C(0,2)和Q(-6,-4)分別代入上式得:
,
解得:,
∴直線CQ的關(guān)系式為:y=x+2,
令y=0得:x=-2,
∴H(-2,0),
∵PH∥y軸,
∴P(-2,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“雙十二”期間,A,B兩個(gè)超市開展促銷活動(dòng),活動(dòng)方式如下:
A超市:購物金額打9折后,若超過2000元再優(yōu)惠300元;
B超市:購物金額打8折.
某學(xué)校計(jì)劃購買某品牌的籃球做獎(jiǎng)品,該品牌的籃球在A,B兩個(gè)超市的標(biāo)價(jià)相同.根據(jù)商場(chǎng)的活動(dòng)方式:
(1)若一次性付款4200元購買這種籃球,則在B商場(chǎng)購買的數(shù)量比在A商場(chǎng)購買的數(shù)量多5個(gè).請(qǐng)求出這種籃球的標(biāo)價(jià);
(2)學(xué)校計(jì)劃購買100個(gè)籃球,請(qǐng)你設(shè)計(jì)一個(gè)購買方案,使所需的費(fèi)用最少.(直接寫出方案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F.
(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長;
(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的口袋里裝有分別標(biāo)有數(shù)字1,2,3,4四個(gè)小球,除數(shù)字不同外,小球沒有任何區(qū)別,每次實(shí)驗(yàn)先攪拌均勻.
(1)若從中任取一球,球上的數(shù)字為偶數(shù)的概率為多少?
(2)若從中任取一球(不放回),再從中任取一球,請(qǐng)用畫樹狀圖或列表格的方法求出兩個(gè)球上的數(shù)字之和為偶數(shù)的概率.
(3)若設(shè)計(jì)一種游戲方案:從中任取兩球,兩個(gè)球上的數(shù)字之差的絕對(duì)值為1為甲勝,否則為乙勝,請(qǐng)問這種游戲方案設(shè)計(jì)對(duì)甲、乙雙方公平嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖案中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的個(gè)數(shù)為( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A城氣象臺(tái)測(cè)得臺(tái)風(fēng)中心在A城正西方向600km的B處,以每小時(shí)200km的速度向北偏東60°的方向移動(dòng),距臺(tái)風(fēng)中心500km的范圍內(nèi)是受臺(tái)風(fēng)影響的區(qū)域.
(1)A城是否受到這次臺(tái)風(fēng)的影響?為什么?
(2)若A城受到這次臺(tái)風(fēng)的影響,那么A城遭受這次臺(tái)風(fēng)影響有多長時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)用14500元購進(jìn)甲、乙兩種礦泉水共500箱,礦泉水的成本價(jià)與銷售價(jià)如表(二)所示:
類別 | 成本價(jià)(元/箱) | 銷售價(jià)(元/箱) |
甲 | 25 | 35 |
乙 | 35 | 48 |
求:(1)購進(jìn)甲、乙兩種礦泉水各多少箱?
(2)該商場(chǎng)售完這500箱礦泉水,可獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“龜兔賽跑”的故事同學(xué)們都聽過,圖中的線段OD和折線OABC表示龜兔賽跑時(shí)路程與時(shí)間的關(guān)系,請(qǐng)根據(jù)圖中的信息,解決下列問題:
(1)填空:折線OABC表示賽跑過程中_________(填“兔子”或“烏龜”)的路程與時(shí)間的關(guān)系,賽跑的全程是_______米.
(2)兔子在起初每分鐘跑多少米?烏龜每分鐘爬多少米?
(3)烏龜用了多少分鐘追上了正在睡覺的兔子?
(4)兔子醒來后以400米/分鐘的速度跑向終點(diǎn),結(jié)果還是比烏龜晚到了0.5分鐘,請(qǐng)你算算兔子中間停下睡覺用了多少時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中真命題的個(gè)數(shù)是( )
①平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線平行;②這5個(gè)數(shù)中有2個(gè)是無理數(shù);③若,則點(diǎn)P(-m,5)在第一象限;④的算術(shù)平方根是4;⑤經(jīng)過一點(diǎn)有且只有一條直線與已知直線垂直;⑥同旁內(nèi)角互補(bǔ).
A.2B.3C.4D.5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com