【題目】如圖,已知矩形ABCD,把矩形沿直線AC折疊,點B落在點E處,連接DE、BE,若△ABE是等邊三角形,則 =

【答案】
【解析】解:

過E作EM⊥AB于M,交DC于N,

∵四邊形ABCD是矩形,

∴DC=AB,DC∥AB,∠ABC=90°,

∴MN=BC,EN⊥DC,

∵延AC折疊B和E重合,△AEB是等邊三角形,

∴∠EAC=∠BAC=30°,

設AB=AE=BE=2a,則BC= = a,

即MN= a,

∵△ABE是等邊三角形,EM⊥AB,

∴AM=a,由勾股定理得:EM= = a,

∴△DCE的面積是 ×DC×EN= ×2a×( a﹣ a)= a2,

△ABE的面積是 AB×EM= ×2a× a= a2,

= =

所以答案是:

【考點精析】本題主要考查了翻折變換(折疊問題)的相關知識點,需要掌握折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】等腰三角形ABC在平面直角坐標系中的位置如圖所示,已知點A(﹣6,0),點B在原點,CA=CB=5,把等腰三角形ABC沿x軸正半軸作無滑動順時針翻轉(zhuǎn),第一次翻轉(zhuǎn)到位置①,第二次翻轉(zhuǎn)到位置②…依此規(guī)律,第15次翻轉(zhuǎn)后點C的橫坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=-x3的圖像分別與x軸、y軸交于A、B兩點.動點PA點開始沿折線AOOBBA運動,點PAOOB,BA上運動的速度分別為1,2 (長度單位/秒);動點EO點開始以(長度單位/秒)的速度沿線段OB運動.設P、E兩點同時出發(fā),運動時間為t (秒),當點P沿折線AOOBBA運動一周時,動點EP同時停止運動.過點EEFOA,交AB于點F

1)求線段AB的長;

2)求證:∠ABO=30°;

3)當t為何值時,點P與點E重合?

4)當t = 時,PE=PF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】按照下列要求畫圖并填空:

1)畫出邊的高,垂足為,則點到直線的距離是線段______的長.

2)用直尺和圓規(guī)作出的邊的垂直平分線,分別交直線于點、,聯(lián)結(jié),則線段______(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,對稱軸為直線x= 的拋物線經(jīng)過B(2,0)、C(0,4)兩點,拋物線與x軸的另一交點為A

(1)求拋物線的解析式;
(2)若點P為第一象限內(nèi)拋物線上的一點,設四邊形COBP的面積為S,求S的最大值;
(3)如圖2,若M是線段BC上一動點,在x軸是否存在這樣的點Q,使△MQC為等腰三角形且△MQB為直角三角形?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】結(jié)合愛市西,愛生活,會創(chuàng)新的主題,某同學設計了一款地面霓虹探測燈,增加美觀的同時也為行人的夜間行路帶去了方便.他的構想如下:在平面內(nèi),如圖1所示,燈射線從開始順時針旋轉(zhuǎn)至便立即回轉(zhuǎn),燈射線從開始順時針旋轉(zhuǎn)至便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈轉(zhuǎn)動的速度是每秒2度,燈轉(zhuǎn)動的速度是每秒1度.假定主道路是平行的,即,且

1)填空:______;

2)若燈射線先轉(zhuǎn)動60秒,燈射線才開始轉(zhuǎn)動,在燈射線到達之前,燈轉(zhuǎn)動幾秒,兩燈的光束互相平行?

3)如圖2,若兩燈同時轉(zhuǎn)動,在燈射線到達之前,若射出的光束交于點,過于點,且,則在轉(zhuǎn)動過程中,請?zhí)骄?/span>的數(shù)量關系是否發(fā)生變化?若不變,請求出其數(shù)量關系;若改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上一點,且AB=14

1)寫出數(shù)軸上點B表示的數(shù);

2)若點M、N分別是線段AO、BO的中點,求線段MN的長;

3)若動點P從點A出發(fā).以每秒5個單位長度的速度沿數(shù)軸向左勻速運動,動點Q從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā).問點P運動多少秒時追上點Q

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】﹣14+3tan30°﹣ +(2017+π)0+( 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于x的一元二次方程x2+(m2xm1=0有兩個相等的實數(shù)根,則m

值是

A. 0 B. 8 C. 4±2 D. 08

查看答案和解析>>

同步練習冊答案