【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結(jié)論:

①b2﹣4ac>0;

②abc>0;

③當(dāng)x>0時,y隨x的增大而增大;

④9a+3b+c<0.

其中,正確結(jié)論是 .(請把所有正確結(jié)論的序號都填上)

【答案】①②④

【解析】

試題分析:拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點判斷c與0的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進(jìn)行推理,進(jìn)而對所得結(jié)論進(jìn)行判斷.

解:①由圖知:拋物線與x軸有兩個不同的交點,則=b2﹣4ac>0,故①正確;

②拋物線開口向上,得:a>0;

拋物線的對稱軸為x=﹣=1,b=﹣2a,故b<0;

拋物線交y軸于負(fù)半軸,得:c<0;

所以abc>0;

故②正確;

③當(dāng)x>1時,y隨x的增大而增大,故③錯誤;

④根據(jù)拋物線的對稱軸方程可知:(﹣1,0)關(guān)于對稱軸的對稱點是(3,0);

當(dāng)x=﹣1時,y<0,所以當(dāng)x=3時,也有y<0,即9a+3b+c<0;故④正確;

所以這四個結(jié)論中①②④正確.

故答案為:①②④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水果店張阿姨以每斤2元的價格購進(jìn)某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.

(1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:x2﹣2x﹣15=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某旅游景點8月份共接待游客25萬人次,10月份共接待游客64萬人次.設(shè)每月的平均增長率為x,則可列方程為(

A.25(1+x)2=64 B.25(1﹣x)2=64

C.64(1+x)2=25 D.64(1﹣x)2=25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點P的坐標(biāo)是(23),則點Px軸的距離是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知正方形ABCD的邊長為1,點E在邊BC上,若AEF=90°,且EF交正方形的外角DCM的平分線CF于點F.

(1)圖1中若點E是邊BC的中點,我們可以構(gòu)造兩個三角形全等來證明AE=EF,請敘述你的一個構(gòu)造方案,并指出是哪兩個三角形全等(不要求證明);

(2)如圖2,若點E在線段BC上滑動(不與點B,C重合).

①AE=EF是否一定成立?說出你的理由;

②在如圖2所示的直角坐標(biāo)系中拋物線y=ax2+x+c經(jīng)過A、D兩點,當(dāng)點E滑動到某處時,點F恰好落在此拋物線上,求此時點F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】4的算術(shù)平方根是( )

A. 4 B. -2 C. 2 D. ±2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同一平面內(nèi)四條直線滿足ab,bccd,則下列結(jié)論成立的是( )

A. ac B. bd C. ad D. bd

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五邊形的內(nèi)角和是_____°,n邊形的外角和為_____°.

查看答案和解析>>

同步練習(xí)冊答案