(2007•襄陽(yáng))?ABCD中,AC交BD于點(diǎn)O,再添加一個(gè)條件,仍不能判定四邊形ABCD是矩形的是( )
A.AB=AD
B.OA=OB
C.AC=BD
D.DC⊥BC
【答案】分析:矩形的判定定理有:
(1)有一個(gè)角是直角的平行四邊形是矩形.
(2)有三個(gè)角是直角的四邊形是矩形.
(3)對(duì)角線(xiàn)互相平分且相等的四邊形是矩形.據(jù)此判斷.
解答:解:根據(jù)矩形的判定定理(有一個(gè)角是直角的平行四邊形是矩形)可得
DC⊥BC可證四邊形ABCD是矩形.故D不正確.
矩形的對(duì)角線(xiàn)相等且相互平分,OA=OB,AC=BD可證四邊形ABCD為矩形,故B不正確,C不正確.
AB=AD時(shí),可證四邊形ABCD為菱形,不能證四邊形ABCD為矩形.故A正確.
故選A.
點(diǎn)評(píng):本題考查的是矩形的判定定理以及平行四邊形的判定和性質(zhì),難度一般.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•襄陽(yáng))如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(0,4)為圓心,半徑為4的圓交y軸正半軸于點(diǎn)A,AB是⊙C的切線(xiàn).動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿AB方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)Q從O點(diǎn)開(kāi)始沿x軸正方向以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),且動(dòng)點(diǎn)P、Q從點(diǎn)A和點(diǎn)O同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)t=1時(shí),得到P1、Q1兩點(diǎn),求經(jīng)過(guò)A、P1、Q1三點(diǎn)的拋物線(xiàn)解析式及對(duì)稱(chēng)軸l;
(2)當(dāng)t為何值時(shí),直線(xiàn)PQ與⊙C相切并寫(xiě)出此時(shí)點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在(2)的條件下,拋物線(xiàn)對(duì)稱(chēng)軸l上存在一點(diǎn)N,使NP+NQ最小,求出點(diǎn)N的坐標(biāo)并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年遼寧省大連市第55中學(xué)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2007•襄陽(yáng))如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(0,4)為圓心,半徑為4的圓交y軸正半軸于點(diǎn)A,AB是⊙C的切線(xiàn).動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿AB方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)Q從O點(diǎn)開(kāi)始沿x軸正方向以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),且動(dòng)點(diǎn)P、Q從點(diǎn)A和點(diǎn)O同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)t=1時(shí),得到P1、Q1兩點(diǎn),求經(jīng)過(guò)A、P1、Q1三點(diǎn)的拋物線(xiàn)解析式及對(duì)稱(chēng)軸l;
(2)當(dāng)t為何值時(shí),直線(xiàn)PQ與⊙C相切并寫(xiě)出此時(shí)點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在(2)的條件下,拋物線(xiàn)對(duì)稱(chēng)軸l上存在一點(diǎn)N,使NP+NQ最小,求出點(diǎn)N的坐標(biāo)并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年江蘇省蘇州市吳江市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2007•襄陽(yáng))如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(0,4)為圓心,半徑為4的圓交y軸正半軸于點(diǎn)A,AB是⊙C的切線(xiàn).動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿AB方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)Q從O點(diǎn)開(kāi)始沿x軸正方向以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),且動(dòng)點(diǎn)P、Q從點(diǎn)A和點(diǎn)O同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)t=1時(shí),得到P1、Q1兩點(diǎn),求經(jīng)過(guò)A、P1、Q1三點(diǎn)的拋物線(xiàn)解析式及對(duì)稱(chēng)軸l;
(2)當(dāng)t為何值時(shí),直線(xiàn)PQ與⊙C相切并寫(xiě)出此時(shí)點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在(2)的條件下,拋物線(xiàn)對(duì)稱(chēng)軸l上存在一點(diǎn)N,使NP+NQ最小,求出點(diǎn)N的坐標(biāo)并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年江蘇省南通市通州區(qū)通西片一模試卷(解析版) 題型:解答題

(2007•襄陽(yáng))如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(0,4)為圓心,半徑為4的圓交y軸正半軸于點(diǎn)A,AB是⊙C的切線(xiàn).動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿AB方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)Q從O點(diǎn)開(kāi)始沿x軸正方向以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),且動(dòng)點(diǎn)P、Q從點(diǎn)A和點(diǎn)O同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)t=1時(shí),得到P1、Q1兩點(diǎn),求經(jīng)過(guò)A、P1、Q1三點(diǎn)的拋物線(xiàn)解析式及對(duì)稱(chēng)軸l;
(2)當(dāng)t為何值時(shí),直線(xiàn)PQ與⊙C相切并寫(xiě)出此時(shí)點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在(2)的條件下,拋物線(xiàn)對(duì)稱(chēng)軸l上存在一點(diǎn)N,使NP+NQ最小,求出點(diǎn)N的坐標(biāo)并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年湖北省襄樊市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2007•襄陽(yáng))如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(0,4)為圓心,半徑為4的圓交y軸正半軸于點(diǎn)A,AB是⊙C的切線(xiàn).動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿AB方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)Q從O點(diǎn)開(kāi)始沿x軸正方向以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),且動(dòng)點(diǎn)P、Q從點(diǎn)A和點(diǎn)O同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)t=1時(shí),得到P1、Q1兩點(diǎn),求經(jīng)過(guò)A、P1、Q1三點(diǎn)的拋物線(xiàn)解析式及對(duì)稱(chēng)軸l;
(2)當(dāng)t為何值時(shí),直線(xiàn)PQ與⊙C相切并寫(xiě)出此時(shí)點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在(2)的條件下,拋物線(xiàn)對(duì)稱(chēng)軸l上存在一點(diǎn)N,使NP+NQ最小,求出點(diǎn)N的坐標(biāo)并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案