【題目】如圖所示,將矩形ABCD沿AE折疊得到△AFE,且點(diǎn)B恰好與DC上的點(diǎn)F重合.

1)求證:△ADF∽△FCE;

2)若tanCEF2,求tanAEB的值.

【答案】(1)見解析;(2)tan∠AEB=

【解析】

(1)因?yàn)椤?/span>AEF是由△AEB翻折得到,推出∠AFB=∠B=90°,推出∠AFD+∠EFC=90°,∠EFC+∠FEC=90°,推出∠AFD=∠FEC,由此即可證明

(2))由tan∠FEC2,推出CF=2EC,設(shè)ECa,FC=2a,EFEBa,由△ADF∽△FCE,,推出DFa,根據(jù)tan∠AEB計(jì)算即可

1)∵四邊形ABCD是矩形,∴ABDC,ADBC,∠D=∠C=∠B=90°.

∵△AEF是由△AEB翻折得到,∴∠AFB=∠B=90°,∴∠AFD+∠EFC=90°,∠EFC+∠FEC=90°,∴∠AFD=∠FEC

∵∠D=∠C,∴△ADF∽△FCE

(2)∵tan∠FEC2,∴CF=2EC設(shè)ECa,FC=2a,EFEBa

∵△ADF∽△FCE,∴,∴,∴DFa,∴ABCDDF+CFa,∴tan∠AEB

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場(chǎng)去年種植了10畝地的南瓜,畝產(chǎn)量為2000kg,根據(jù)市場(chǎng)需要,今年該農(nóng)場(chǎng)擴(kuò)大了種植面積,并且全部種植了高產(chǎn)的新品種南瓜,設(shè)南瓜種植面積的增長(zhǎng)率為x

(1)則今年南瓜的種植面積為   畝;(用含x的代數(shù)式表示)

(2)如果今年南瓜畝產(chǎn)量的增長(zhǎng)率是種植面積的增長(zhǎng)率的,今年南瓜的總產(chǎn)量為60000kg求南瓜畝產(chǎn)量的增長(zhǎng)率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓心都在x軸正半軸上的半圓O1,半圓O2,…,半圓On與直線l相切.設(shè)半圓O1,半圓O2,…,半圓On的半徑分別是r1,r2,…,rn,則當(dāng)直線l與x軸所成銳角為30°,且r1=1時(shí),r2018_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(1)sin2 1°+sin2 2°+sin2 3°+…+sin2 87°+sin2 88°+sin2 89°

(2)sin2 66°-tan54°tan36°+sin2 24°+sin230°+cos230°+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,BPC是等邊三角形,BP、CP的延長(zhǎng)線分別交AD于點(diǎn)E、F,連結(jié)BD、DP,BD與CF相交于點(diǎn)H.給出下列結(jié)論:

BDE∽△DPE;②=;③DP2=PHPB;④tanDBE=2

其中正確的是( )

A.①②③④ B.①②④ C.②③④ D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖像如圖所示,并且關(guān)于x的一元二次方程ax2+bx+c –m=0有兩個(gè)實(shí)數(shù)根,下列結(jié)論:①b2-4ac>0;②abc>0;③;④,其中正確的個(gè)數(shù)有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)Ay軸正半軸上,頂點(diǎn)Cx軸正半軸上,拋物線a<0)的頂點(diǎn)為D,且經(jīng)過點(diǎn)AB.若△ABD為等腰直角三角形,則a的值為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某水庫(kù)上游有一單孔拋物線型拱橋,它的跨度AB為100米.最低水位(與AB在同一平面)時(shí)橋面CD距離水面25米,橋拱兩端有兩根25米高的水泥柱BCAD,中間等距離豎立9根鋼柱支撐橋面,拱頂正上方的鋼柱EF長(zhǎng)5米.

(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求拋物線型橋拱的解析式;

(2)在最低水位時(shí),能并排通過兩艘寬28米,高16米的游輪嗎?(假設(shè)兩游輪之間的安全間距為4米)

(3)由于下游水庫(kù)蓄水及雨季影響導(dǎo)致水位上漲,水位最高時(shí)比最低水位高出13米,請(qǐng)問最高水位時(shí)沒在水面以下的鋼柱總長(zhǎng)為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店將進(jìn)價(jià)為8元的商品按每件10元出售,每天可銷售200件,現(xiàn)商家采用提高售價(jià),減少進(jìn)貨量的方法增加利潤(rùn),如果這種商品每件漲0.5元,其銷量就會(huì)減少10件,那么要使利潤(rùn)為640元,需將售價(jià)定為( 。

A. 16元 B. 12元 C. 16元或12元 D. 14元

查看答案和解析>>

同步練習(xí)冊(cè)答案