【題目】如圖,已知△ABC,分別以AB,AC為直角邊,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,連結(jié)BD,CE交于點(diǎn)F,設(shè)AB=m,BC=n.
(1)求證:∠BDA=∠ECA.
(2)若m=,n=3,∠ABC=75°,求BD的長.
(3)當(dāng)∠ABC=____時,BD最大,最大值為____(用含m,n的代數(shù)式表示)
(4)試探究線段BF,AE,EF三者之間的數(shù)量關(guān)系。
【答案】135° m+n
【解析】
試題
(1)由已知條件證△ABD≌△AEC,即可得到∠BDA=∠CEA;
(2)過點(diǎn)E作EG⊥CB交CB的延長線于點(diǎn)G,由已知條件易得∠EBG=60°,BE=2,這樣在Rt△BEG中可得EG=,BG=1,結(jié)合BC=n=3,可得GC=4,由長可得EC=,結(jié)合△ABD≌△AEC可得BD=EC=;
(3)由(2)可知,BE=,BC=n,因此當(dāng)E、B、C三點(diǎn)共線時,EC最大=BE+BC=,此時BD最大=EC最大=;
(4)由△ABD≌△AEC可得∠AEC=∠ABD,結(jié)合△ABE是等腰直角三角形可得△EFB是直角三角形及BE2=2AE2,從而可得EF2=BE2-BF2=2AE2-BF2.
試題解析:
(1)∵△ABE和△ACD都是等腰直角三角形,且∠EAB=∠DAC=90°,
∴AE=AB,AC=AD,∠EAB+∠BAC=∠BAC+∠DAC,即∠EAC=∠BAD,
∴△EAC≌△BAD,
∴∠BDA=∠ECA;
(2)如下圖,過點(diǎn)E作EG⊥CB交CB的延長線于點(diǎn)G,
∴∠EGB=90°,
∵在等腰直角△ABE,∠BAE=90°,AB=m= ,
∴∠ABE=45°,BE=2,
∵∠ABC=75°,
∴∠EBG=180°-75°-45°=60°,
∴BG=1,EG=,
∴GC=BG+BC=4,
∴CE=,
∵△EAC≌△BAD,
∴BD=EC=;
(3)由(2)可知,BE=,BC=n,因此當(dāng)E、B、C三點(diǎn)共線時,EC最大=BE+BC=,
∵BD=EC,
∴BD最大=EC最大=,此時∠ABC=180°-∠ABE=180°-45°=135°,
即當(dāng)∠ABC=135°時,BD最大=;
(4)∵△ABD≌△AEC,
∴∠AEC=∠ABD,
∵在等腰直角△ABE中,∠AEC+∠CEB+∠ABE=90°,
∴∠ABD+∠ABE+∠CEB=90°,
∴∠BFE=180°-90°=90°,
∴EF2+BF2=BE2,
又∵在等腰Rt△ABE中,BE2=2AE2,
∴2AE2=EF2+BF2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC<BC,將△ABC沿EF折疊,使點(diǎn)A落在直角邊BC上的D點(diǎn)處,設(shè)EF與AB、AC邊分別交于點(diǎn)E、F,如果折疊后△CDF與△BDE均為等腰三角形,那么∠B=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,
(1)若∠ABC=60°,∠ACB=40°,求∠BOC的度數(shù);
(2)若∠ABC=60°,OB=4,且△ABC的周長為16,求△ABC的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校對學(xué)生就“食品安全知識”進(jìn)行了抽樣調(diào)查(每人選填一類),繪制了如圖所示的兩幅統(tǒng)計(jì)圖(不完整)。請根據(jù)圖中信息,解答下列問題:
(1)根據(jù)圖中數(shù)據(jù),求出扇形統(tǒng)計(jì)圖中的值,并補(bǔ)全條形統(tǒng)計(jì)圖。
(2)該校共有學(xué)生900人,估計(jì)該校學(xué)生對“食品安全知識”非常了解的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為節(jié)約用水,某市居民生活用水按階梯式水價計(jì)量,水價分為三個階梯,價格表如下表所示:
某市自來水銷售價格表
類別 | 月用水量 (立方米) | 供水價格 (元/立方米) | 污水處理費(fèi) (元/立方米) | |
居民生活用水 | 階梯一 | 0~18(含18) | 1.90 | 1.00 |
階梯二 | 18~25(含25) | 2.85 | ||
階梯三 | 25以上 | 5.70 |
(注:居民生活用水水價=供水價格+污水處理費(fèi))
(1)當(dāng)居民月用水量在18立方米及以下時,水價是_____元/立方米.
(2)4月份小明家用水量為20立方米,應(yīng)付水費(fèi)為:
18×(1.90+1.00)+2×(2.85+1.00)=59.90(元)
預(yù)計(jì)6月份小明家的用水量將達(dá)到30立方米,請計(jì)算小明家6月份的水費(fèi).
(3)為了節(jié)省開支,小明家決定每月用水的費(fèi)用不超過家庭收入的1%,已知小明家的平均月收入為7530元,請你為小明家每月用水量提出建議
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,將ABCD放置在第一象限,且AB∥x軸.直線y=﹣x從原點(diǎn)出發(fā)沿x軸正方向平移,在平移過程中直線被平行四邊形截得的線段長度l與直線在x軸上平移的距離m的函數(shù)圖象如圖2所示,那么AD的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A坐標(biāo)(0,6),AC⊥y軸,且AC=AO,點(diǎn)B,C橫坐標(biāo)相同,點(diǎn)D在AC上,tan∠AOD=,若反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)B、D.
(1)求:k及點(diǎn)B坐標(biāo);
(2)將△AOD沿著OD折疊,設(shè)頂點(diǎn)A的對稱點(diǎn)A1的坐標(biāo)是A1(m,n),求:代數(shù)式m+3n的值以及點(diǎn)A1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△BAD和△BCE均為等腰直角三角形,∠BAD =∠BCE = 90°,點(diǎn)M為AN的中點(diǎn),過點(diǎn)E與AD平行的直線交射線AM于點(diǎn)N。
(1)當(dāng)A,B,C三點(diǎn)在同一直線上時(如圖1),求證:AD=NE ;
(2)將圖1中的△BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)A,B,E三點(diǎn)在同一直線上時(如圖2),求證:△ACN為等腰直角三角形;
(3)將圖1中△BCE繞點(diǎn)B旋轉(zhuǎn)到圖3位置時,(2)中的結(jié)論是否仍成立?若成立,請證明;若不成立,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究與發(fā)現(xiàn):如圖①,在△ABC中,∠B=∠C=45°,點(diǎn)D在BC邊上,點(diǎn)E在AC邊上,且∠ADE=∠AED,連結(jié)DE.
(1)當(dāng)∠BAD=60°時,求∠CDE的度數(shù);
(2)當(dāng)點(diǎn)D在BC(點(diǎn)B、C除外)邊上運(yùn)動時,試探究∠BAD與∠CDE的數(shù)量關(guān)系;
(3)深入探究:如圖②,若∠B=∠C,但∠C≠45°,其它條件不變,試?yán)^續(xù)探究∠BAD與∠CDE的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com