【題目】如圖,直線y=x與拋物線y=x2﹣x﹣3交于A、B兩點,點P是拋物線上的一個動點,過點P作直線PQ⊥x軸,交直線y=x于點Q,設(shè)點P的橫坐標(biāo)為m,則線段PQ的長度隨m的增大而減小時m的取值范圍是( 。
A. m<﹣1或m> B. m<﹣1或<m<3 C. m<﹣1或m>3 D. m<﹣1或1<m<3
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB的中點O為圓心,作半圓與AC相切,點P,Q分別是邊BC和半圓上的動點,連接PQ,則PQ長的最大值與最小值的和是( 。
A. 9 B. 10 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】P是⊙O內(nèi)一點,過點P作⊙O的任意一條弦AB,我們把PAPB的值稱為點P關(guān)于⊙O的“冪值”
(1)⊙O的半徑為6,OP=4.
①如圖1,若點P恰為弦AB的中點,則點P關(guān)于⊙O的“冪值”為_____;
②判斷當(dāng)弦AB的位置改變時,點P關(guān)于⊙O的“冪值”是否為定值,若是定值,證明你的結(jié)論;若不是定值,求點P關(guān)于⊙0的“冪值”的取值范圍;
(2)若⊙O的半徑為r,OP=d,請參考(1)的思路,用含r、d的式子表示點P關(guān)于⊙O的“冪值”或“冪值”的取值范圍_____;
(3)在平面直角坐標(biāo)系xOy中,C(1,0),⊙C的半徑為3,若在直線y=x+b上存在點P,使得點P關(guān)于⊙C的“冪值”為6,請直接寫出b的取值范圍_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點的坐標(biāo)為,的面積是.
求點的坐標(biāo);
求過點、、的拋物線的解析式;
在中拋物線的對稱軸上是否存在點,使的周長最?若存在,求出點的坐標(biāo);若不存在,請說明理由;
在中軸下方的拋物線上是否存在一點,過點作軸的垂線,交直線于點,線段把分成兩個三角形,使其中一個三角形面積與四邊形面積比為?若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A(a,1)、B(﹣1,b)都在雙曲線y=上,點P、Q分別是x軸、y軸上的動點,當(dāng)四邊形PABQ的周長取最小值時,PQ所在直線的解析式是( )
A.y=x B.y=x+1 C.y=x+2 D.y=x+3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示的圖形,像我們常見的符號——箭號.我們不妨把這樣圖形叫做“箭頭四角形”.
探究:
(1)觀察“箭頭四角形”,試探究與、、之間的關(guān)系,并說明理由;
應(yīng)用:
(2)請你直接利用以上結(jié)論,解決以下兩個問題:
①如圖2,把一塊三角尺放置在上,使三角尺的兩條直角邊、恰好經(jīng)過點、,若,則 ;
②如圖3,、的2等分線(即角平分線)、相交于點,若,
,求的度數(shù);
拓展:
(3)如圖4,,分別是、的2020等分線(),它們的交點從上到下依次為、、、…、.已知,,則 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2011山東濟(jì)南,22,3分)如圖1,△ABC中,∠C=90°,∠ABC=30°,AC=m,延長CB至點D,使BD=AB.
①求∠D的度數(shù);
②求tan75°的值.
(2)如圖2,點M的坐標(biāo)為(2,0),直線MN與y軸的正半軸交于點N,∠OMN=75°.求直線MN的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在中,,
(1)用尺規(guī)在邊BC上求作一點P,使;(不寫作法,保留作圖痕跡)
(2)連接AP當(dāng)為多少度時,AP平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市正在舉行文化藝術(shù)節(jié)活動,一商店抓住商機,決定購進(jìn)甲,乙兩種藝術(shù)節(jié)紀(jì)念品.若購進(jìn)甲種紀(jì)念品4件,乙種紀(jì)念品3件,需要550元,若購進(jìn)甲種紀(jì)念品5件,乙種紀(jì)念品6件,需要800元.
(1)求購進(jìn)甲、乙兩種紀(jì)念品每件各需多少元?
(2)若該商店決定購進(jìn)這兩種紀(jì)念品共80件,其中甲種紀(jì)念品的數(shù)量不少于60件.考慮到資金周轉(zhuǎn),用于購買這80件紀(jì)念品的資金不能超過7100元,那么該商店共有幾種進(jìn)貨方案7
(3)若銷售每件甲種紀(jì)含晶可獲利潤20元,每件乙種紀(jì)念品可獲利潤30元.在(2)中的各種進(jìn)貨方案中,若全部銷售完,哪一種方案獲利最大?最大利利潤多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com