17、如圖,把一張長(zhǎng)方形的紙片按如圖所示的方式折疊,EM、FM為折痕,折疊后的C點(diǎn)落在B'M或B'M的延長(zhǎng)線上,那么∠EMF的度數(shù)是
90
度.
分析:由折疊可知,∠BME=∠B′ME,∠CMF=∠C′MF,而這四個(gè)角的和為180°,從而可求∠EMB′+∠FMC的度數(shù).
解答:解:根據(jù)折疊的性質(zhì)可知,∠BME=∠B′ME,∠CMF=∠C′MF,
∵∠BME+∠B′ME+∠CMF+∠C′MF=180°,
∴2(∠EMB′+∠FMC)=180°,即∠EMB′+∠FMC=90°
∴∠EMF=90°.
點(diǎn)評(píng):本題考查圖形的翻折變換,解題過(guò)程中應(yīng)注意折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,根據(jù)軸對(duì)稱的性質(zhì),折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

1、如圖是把一張長(zhǎng)方形的紙沿長(zhǎng)邊中點(diǎn)的連線對(duì)折兩次后得到的圖形.再沿虛線裁剪,外面部分展開(kāi)后的圖形是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,把一張長(zhǎng)方形的紙片沿著EF折疊,點(diǎn)C、D分別落在M、N的位置,且∠MFB=
1
2
∠MFE.則∠MFB=( 。
A、30°B、36°
C、45°D、72°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,把一張長(zhǎng)方形的紙片ABCD沿BD對(duì)折,使C點(diǎn)落在E點(diǎn)處,BE與AD相交于點(diǎn)O,圖中除了△ABD≌△CDB外,請(qǐng)寫(xiě)出其他一組全等三角形
△BED≌△BCD,△ABD≌△EDB,△EOD≌△AOB(任意寫(xiě)出一組即可).
△BED≌△BCD,△ABD≌△EDB,△EOD≌△AOB(任意寫(xiě)出一組即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,把一張長(zhǎng)方形的紙片沿著EF折疊,點(diǎn)C、D分別落在M、N的位置,且∠MFB=
12
∠MFE.則∠MFB=
36°
36°

查看答案和解析>>

同步練習(xí)冊(cè)答案