【題目】一個(gè)四位正整數(shù)m各個(gè)數(shù)位上的數(shù)字互不相同且都不為0,四位數(shù)m的前兩位數(shù)字之和為5,后兩位數(shù)字之和為11,稱這樣的四位數(shù)m為“半期數(shù)”;把四位數(shù)m的各位上的數(shù)字依次輪換后得到新的四位數(shù)m′,設(shè)m′=,在m′的所有可能的情況中,當(dāng)|b+2c﹣a﹣d|最小時(shí),稱此時(shí)的m′是m的“伴隨數(shù)”,并規(guī)定F(m′)=a2+c2﹣2bd;例如:m=2365,則m′為:3652,6523,5236,因?yàn)?/span>|6+10﹣3﹣2|=11,|5+4﹣6﹣3|=0,|2+6﹣5﹣6|=3,0最小,所以6523叫做2365的“伴隨數(shù)”,F(5236)=52+32﹣2×2×6=10.
(1)最大的四位“半期數(shù)”為 ;“半期數(shù)”3247的“伴隨數(shù)”是 .
(2)已知四位數(shù)P=是“半期數(shù)”,三位數(shù)Q=,且441Q﹣4P=88991,求F(P')的最大值.
【答案】(1)4192,7324;(2)42.
【解析】
(1)根據(jù)“半期數(shù)”的定義分析最大的四位“半期數(shù)”應(yīng)該是千位最大,最大只能為4,所以百位是1,十位最大是9,個(gè)位是2,所以最大半期數(shù)為:4192,分析3247的所有可能為,2473,4732,7324.根據(jù)題意|b+2c﹣a﹣d|最小的數(shù)是7324,所以3247的“伴隨數(shù)”是:7324.
(2)根據(jù)定義可知a+b=5,c+d=11.再根據(jù)441Q﹣4P=88991,可以算出P的值,從而求出F(P')的最大值.
解;(1)根據(jù)題意可得最大的四位“半期數(shù)”應(yīng)該是千位最大,最大只能為4,所以百位是1,十位最大是9,個(gè)位是2,所以最大半期數(shù)為:4192.
∵3247的所有可能為,2473,4732,7324.
∵|4+14﹣2﹣3|=13,|7+6﹣4﹣2|=7,|3+4﹣7﹣4|=4, 4最小,所以7324為3247的“伴隨數(shù)”.
故答案為:4192;7324.
(2)∵P為“半期數(shù)”
∴a+b=5,c+d=11,∴b=5﹣a,d=11﹣c,∴P=1000a+100(5﹣a)+10c+11﹣c=900a+9c+511.
∵Q=200+10a+c,∴441Q﹣4P=88991,∴441(200+10a+c)﹣4(900a+9c+511)=88991
化簡(jiǎn)得:2a+c=7
①當(dāng)a=1時(shí),c=5,此時(shí)這個(gè)四位數(shù)為1456符合題意;
②當(dāng)a=2時(shí),c=3,此時(shí)這個(gè)四位數(shù)為2338不符合題意,舍去;
③當(dāng)a=3時(shí),c=1,不符合題意,舍去;
綜上所述:這個(gè)四位數(shù)只能是1456,則P'可能為4561,5614,6145.
∵|5+12﹣4﹣1|=12,|6+2﹣5﹣4|=1,|1+8﹣6﹣5|=2,1最小,所以5614為P的“伴隨數(shù)”,∴F(5614)=a2+c2﹣2bd=25+1﹣2×6×4=﹣22;
F(4561)=a2+c2﹣2bd=16+36﹣2×5×1=42;
F(6145)=a2+c2﹣2bd=36+16﹣2×1×5=42;
∴F(P')的最大值為42.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=90°,矩形ABCD的頂點(diǎn)A、B分別在邊OM,ON上,當(dāng)B在邊ON上運(yùn)動(dòng)時(shí),A隨之在OM上運(yùn)動(dòng),矩形ABCD的形狀保持不變,其中AB=2,BC=1,運(yùn)動(dòng)過程中,點(diǎn)D到點(diǎn)O的最大距離為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填空,把下面的推理過程補(bǔ)充完整,并在括號(hào)內(nèi)注明理由:
如圖,已知A、B、C、D在同一直線上,AE∥DF,AC=BD,∠E=∠F,求證:BE∥CF.
證明:∵AE∥DF(已知)
∴_________(兩直線平行,內(nèi)錯(cuò)角相等)
∵AC=BD(已知)
又∵AC=AB+BC,BD=BC+CD
∴________(等式的性質(zhì))
∵∠E=∠F(已知)
∴△ABE≌△DCF(___________)
∴∠ABE=∠DCF(_________________)
∵ABF+∠CBE=180°,∠DCF+∠BCF=180°
∴∠CBE=∠BCF(__________________)
∴BE∥CF(________________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB分別與x軸、y軸交于點(diǎn)B、C,與直線OA交于點(diǎn)A.已知點(diǎn)A的坐標(biāo)為(﹣3,5),OC=4.
(1)分別求出直線AB、AO的解析式;
(2)求△ABO的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年“五一節(jié)”前,某商場(chǎng)用60萬元購進(jìn)某種商品,該商品有甲、乙兩種包裝共500件,其中每件甲包裝中有75個(gè)A種產(chǎn)品,每個(gè)A產(chǎn)品的成本為12元;每件乙包裝中有100個(gè)B產(chǎn)品,每個(gè)B種產(chǎn)品的成本為14元.商場(chǎng)將A產(chǎn)品標(biāo)價(jià)定為每個(gè)18元,B產(chǎn)品標(biāo)價(jià)定為每個(gè)20元.
(1)甲、乙兩種包裝的產(chǎn)品各有多少件?
(2)“五一節(jié)”商場(chǎng)促銷,將A產(chǎn)品按原定標(biāo)價(jià)打9折銷售,B種產(chǎn)品按原定標(biāo)價(jià)打8.5折銷售,“五一節(jié)”期間該產(chǎn)品全部賣完,該商場(chǎng)銷售該商品共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為邊長為2的正方形ABCD的對(duì)角線BD上任一點(diǎn),過點(diǎn)P作PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,連接EF.給出以下4個(gè)結(jié)論:①AP=EF;②AP⊥EF;③EF最短長度為;④若∠BAP=30°時(shí),則EF的長度為2.其中結(jié)論正確的有( 。
A. ①②③B. ①②④C. ②③④D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(﹣2,3),B(﹣6,0),C(﹣1,0).
(1)將△ABC繞坐標(biāo)原點(diǎn)O旋轉(zhuǎn)180°,畫出圖形,并寫出點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)_____;
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,直接寫出點(diǎn)A的對(duì)應(yīng)點(diǎn)A″的坐標(biāo)_____;
(3)請(qǐng)直接寫出:以A、B、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的所有可能的坐標(biāo)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是正△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;②點(diǎn)O與O′的距離為4;③∠AOB=150°;④S四邊形AOBO′=6+4;⑤S△AOC+S△AOB=6+,其中正確的結(jié)論是( )
A. ①②③⑤ B. ①②③④ C. ①②④⑤ D. ①②③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種實(shí)驗(yàn)用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時(shí)間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時(shí)間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測(cè)速儀測(cè)得彈珠1分鐘末的速度為2米/分,求:
(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.
(2)彈珠在軌道上行駛的最大速度.
(3)求彈珠離開軌道時(shí)的速度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com