【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5,過(guò)點(diǎn)B作BD⊥AB,點(diǎn)C,D都在AB上方,AD交△BCD的外接圓⊙O于點(diǎn)E.
(1)求證:∠CAB=∠AEC.
(2)若BC=3.
①EC∥BD,求AE的長(zhǎng).
②若△BDC為直角三角形,求所有滿足條件的BD的長(zhǎng).
(3)若BC=EC= ,則= .(直接寫出結(jié)果即可)
【答案】(1)見(jiàn)解析;(2)①AE=,②BD= ;(3).
【解析】
(1)利用圓的內(nèi)接四邊形的性質(zhì)以及等角的余角相等的性質(zhì)易證明出結(jié)論成立;
(2)延長(zhǎng)AC交BD于點(diǎn)F,利用平行線等分線段和相似三角形對(duì)應(yīng)邊成比例求解即可;
(3)利用勾股定理和相似三角形分別求出AE和BD的長(zhǎng),依據(jù)對(duì)應(yīng)邊等高三角形的面積比是對(duì)應(yīng)邊之比,進(jìn)而求解;
證明:(1)∵四邊形BCED內(nèi)接于⊙O
∴∠AEC=∠DBC
又∵DB⊥AB
∴∠ABC+∠DBC=90°
又∵∠ACB=90°
∴在Rt△ABC中,∠CAB+∠ABC=90°
∴∠DBC=∠CAB
∴∠CAB=∠AEC
(2)①如圖1延長(zhǎng)AC交BD于點(diǎn)F,延長(zhǎng)EC交AB于點(diǎn)G.
∵在Rt△ABC中,AB=5,BC=3
∴由勾股定理得,AC=4
又∵BC⊥AF,AB⊥BF
∠AFB=∠BFC
∴Rt△AFB∽Rt△BFC
∴
∴BC2=CFAC
即9=CF4,解得,CF=
又∵EC∥BD
∴CG⊥AB
∴ABCG=ACBC
即5CG=4×3,解得,CG=
又∵在Rt△ACG中,AG==
又∵EC∥DB
∴∠AEC=∠ADB
由(1)得,∠CAB=∠AEC
∴∠ADB=∠CAB
又∵∠ACB=∠DBA=90°
∴Rt△ABC∽Rt△DBA
∴
得AD=
又∵EG∥BD
∴
得AE=
②當(dāng)△BDC是直角三角形時(shí),如圖二所示
∵∠BCD=
∴BD為⊙O直徑
又∵∠ACB=90°
∴A、C、D三點(diǎn)共線
即BC⊥AD時(shí)垂足為C,此時(shí)C點(diǎn)與E點(diǎn)重合.
又∵∠DAB=∠BAC,∠ACB=ABD=90°
∴Rt△ACB∽Rt△ABD
∴
得AD=
又∵在Rt△ABD中,BD=
③如圖三,由B、C、E都在⊙O上,且BC=CE=
∴
∴∠ADC=∠BDC
即DC平分∠ADB
過(guò)C作CM⊥BD,CN⊥AD,CH⊥AB垂足分別為M、N.,H.
∵在Rt△ACB中AB=5,BC=
∴AC=2
又∵在Rt△ACB中CH⊥AB
∴ABCH=ACBC
即5CH=2×
解得,CH=2
∴MB=2
又∵DC平分∠ADB
∴CM=CN
又∵在Rt△CHB中BC=5,CH=2
∴HB=1
∴CM=CN=1
又∵在△DCN與△DCM中
∴△DCN與△DCM(AAS)
∴DN=DM
設(shè)DN=DM=x
則BD=x+2,AD=x+
在Rt△ABD中由AB2+BD2=AD2得,
25+(x+2)2=(x+)2
解得,x=
∴BD=BM+MD=2+=
又由(1)得∠CAB=∠AEC,且∠ENC=∠ACB
∴△ENC∽△ACB
∴
∴NE=2
又∵在Rt△CAN中CN=1,AC=2
∴AN==
∴AE=AN+NE=+2
又∵S△BCD=BDCM,S△ACE=AECN,CM=CN
∴
故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,4張如圖1的長(zhǎng)為a,寬為b(a>b)長(zhǎng)方形紙片,按圖2的方式放置,陰影部分的面積為S1,空白部分的面積為S2,若S2=2S1,則a,b滿足( 。
A. a=B. a=2bC. a=bD. a=3b
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,點(diǎn)O在斜邊AB上,以O(shè)為圓心,OB為半徑作圓,分別與BC,AB相交于點(diǎn)D,E,連結(jié)AD.已知∠CAD=∠B,
(1)求證:AD是⊙O的切線.
(2)若BC=8,tanB=,求⊙O 的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+2的圖象與x軸交于A(﹣3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求這個(gè)二次函數(shù)的關(guān)系解析式;
(2)點(diǎn)P是直線AC上方的拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)P,使△ACP的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
(3)在平面直角坐標(biāo)系中,是否存在點(diǎn)Q,使△BCQ是以BC為腰的等腰直角三角形?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某區(qū)2014教師招聘有拉開(kāi)序幕,這給很多有志于教育事業(yè)的人員很多機(jī)會(huì).下面是今年報(bào)考人數(shù)統(tǒng)計(jì)表(數(shù)學(xué))
招聘崗位 | 招聘計(jì)劃 | 報(bào)考人數(shù) | |||
高中教師1 | 研究生 | 高中 | 數(shù)學(xué) | 10 | |
高中教師2 | 普通 | 高中 | 數(shù)學(xué) | 19 | |
初中教師 | 普通 | 初中 | 數(shù)學(xué) | 12 | 55 |
小學(xué)教師1 | 普通 | 城區(qū)與八鎮(zhèn) | 數(shù)學(xué) | 18 | 83 |
小學(xué)教師2 | 普通 | 其他 | 數(shù)學(xué) | 21 | 93 |
(1)根據(jù)上表信息,請(qǐng)制作補(bǔ)完下面的扇形統(tǒng)計(jì)圖和上述表格.
(2)錄取比例最小的是多少?最大的是多少?
(3)如果是你(本科畢業(yè)),僅從錄取比例上看,你會(huì)選擇報(bào)考哪個(gè)崗位?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BA=BC=4,∠A=30°,D是AC上一動(dòng)點(diǎn),
(Ⅰ)AC的長(zhǎng)=_____;
(Ⅱ)BD+DC的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有四張質(zhì)地均勻,大小完全相同的卡片,在其正面分別標(biāo)有數(shù)字﹣1,﹣2,2,3,把卡片背面朝上洗勻,從中隨機(jī)抽出一張后,不放回,再?gòu)闹须S機(jī)抽出一張,則兩次抽出的卡片所標(biāo)數(shù)字之和為正數(shù)的概率為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于二象限內(nèi)的A點(diǎn)和四象限內(nèi)的B點(diǎn),與x軸將于點(diǎn)C,連接AO,已知AO=2,tan∠AOC=,點(diǎn)B的坐標(biāo)為(a,﹣4).
(1)求此反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校積極參與垃圾分類活動(dòng),以班級(jí)為單位收集可回收的垃圾,下面是七年級(jí)各班一周收集的可回收垃圾的質(zhì)量頻數(shù)表和頻數(shù)直方圖(每組含前一個(gè)邊界值,不含后一個(gè)邊界值).
某校七年級(jí)各班一周收集的可回收垃圾的質(zhì)量頻數(shù)表
組別(kg) | 頻數(shù) |
4.0~4.5 | 2 |
4.5~5.0 | a |
5.0~5.5 | 3 |
5.5~6.0 | 1 |
(1)求a的值;
(2)已知收集的可回收垃圾以0.8元/kg被回收,該年級(jí)這周收集的可回收垃圾被回收后所得的金額能否達(dá)到50元.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com