【題目】設(shè)θ為直角三角形的一個(gè)銳角,給出θ角三角函數(shù)的兩條基本性質(zhì):①tanθ=;②cos2θ+sin2θ=1,利用這些性質(zhì)解答本題.已知cosθ+sinθ=,求值:
(1)tanθ+; (2)|cosθ-sinθ|.
【答案】(1)4;(2).
【解析】
(1)將tanθ=代入tanθ+并且通分發(fā)現(xiàn),求出cosθsinθ,代入計(jì)算即可;(2)先將所求的式子平方,展開后得到cos2θ﹣2cosθsinθ+sin2θ,再將第一步求解中的cosθsinθ=,cos2θ+sin2θ=1代入計(jì)算,再求出算數(shù)平方根即可.
(1)∵cosθ+sinθ=,
∴(cosθ+sinθ)2=()2,
cos2θ+2cosθsinθ+sin2θ=,
cosθsinθ=,
∴tanθ+
=+
=
=
=4
(2)∵(cosθ﹣sinθ)2=cos2θ﹣2cosθsinθ+sin2θ=1﹣2×=,
∴cosθ﹣sinθ=±,
∴|cosθ﹣sinθ|=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線的圖象如圖所示,拋物線過點(diǎn),則下列結(jié)論:
①;②;③;④(為一切實(shí)數(shù));⑤;正確的個(gè)數(shù)有( ).
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)O是正方形ABCD對(duì)角線BD的中點(diǎn).
(1)如圖1,若點(diǎn)E是OD的中點(diǎn),點(diǎn)F是AB上一點(diǎn),且使得∠CEF=90°,過點(diǎn)E作ME∥AD,交AB于點(diǎn)M,交CD于點(diǎn)N.
①∠AEM=∠FEM; ②點(diǎn)F是AB的中點(diǎn);
(2)如圖2,若點(diǎn)E是OD上一點(diǎn),點(diǎn)F是AB上一點(diǎn),且使,請(qǐng)判斷△EFC的形狀,并說明理由;
(3)如圖3,若E是OD上的動(dòng)點(diǎn)(不與O,D重合),連接CE,過E點(diǎn)作EF⊥CE,交AB于點(diǎn)F,當(dāng)時(shí),請(qǐng)猜想的值(請(qǐng)直接寫出結(jié)論).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的口袋里有 個(gè)除顏色外都相同的球,其中有 個(gè)紅球, 個(gè)黃球.
(1) 若從中隨意摸出一個(gè)球,求摸出紅球的可能性;
(2) 若要使從中隨意摸出一個(gè)球是紅球的可能性為 ,求袋子中需再加入幾個(gè)紅球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)y=k1x的圖象與反比例函數(shù)的圖象的一個(gè)交點(diǎn)是(1,3).
(1)寫出這兩個(gè)函數(shù)的表達(dá)式,并確定這兩個(gè)函數(shù)圖象的另一個(gè)交點(diǎn)的坐標(biāo);
(2)畫出草圖,并據(jù)此寫出使反比例函數(shù)大于正比例函數(shù)的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點(diǎn)E為AD的延長線上一點(diǎn),且DE=DC,點(diǎn)P為邊AD上一動(dòng)點(diǎn),且PC⊥PG,PG=PC,點(diǎn)F為EG的中點(diǎn).當(dāng)點(diǎn)P從D點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí),則CF的最小值為___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】山西特產(chǎn)專賣店銷售核桃,其進(jìn)價(jià)為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請(qǐng)回答:
(1)每千克核桃應(yīng)降價(jià)多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該店應(yīng)按原售價(jià)的幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形OABC的頂點(diǎn)O,B在y軸上,頂點(diǎn)A在反比例函數(shù)y=上,頂點(diǎn)C在反比例函數(shù)y=上,則平行四邊形OABC的面積是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC是等腰直角三角形,∠ACB=90°,AB=8cm,動(dòng)點(diǎn)P、Q以2cm/s的速度分別從點(diǎn)A、B同時(shí)出發(fā),點(diǎn)P沿A到B向終點(diǎn)B運(yùn)動(dòng),點(diǎn)Q沿B到A向終點(diǎn)A運(yùn)動(dòng),過點(diǎn)P作PD⊥AC于點(diǎn)D,以PD為邊向右側(cè)作正方形PDEF,過點(diǎn)Q作QG⊥AB,交折線BC﹣CA于點(diǎn)G與點(diǎn)C不重合,以QG為邊作等腰直角△QGH,且點(diǎn)G為直角頂點(diǎn),點(diǎn)C、H始終在QG的同側(cè),設(shè)正方形PDEF與△QGH重疊部分圖形的面積為S(cm2),點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s)(0<t<4).
(1)當(dāng)點(diǎn)F在邊QH上時(shí),求t的值.
(2)點(diǎn)正方形PDEF與△QGH重疊部分圖形是四邊形時(shí),求S與t之間的函數(shù)關(guān)系式;
(3)當(dāng)FH所在的直線平行或垂直AB時(shí),直接寫出t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com