【題目】已知, 、均為等邊三角形,點(diǎn)是內(nèi)的點(diǎn)
(1)如圖①,說明的理由;
(2)如圖②,當(dāng)點(diǎn)在線段上時(shí),求的度數(shù);
(3)當(dāng)為等腰直角三角形時(shí),________度(直接寫出客案).
【答案】(1)見解析;(2)見解析;(3)或或.
【解析】
(1)先理由等邊三角形的性質(zhì)得出,,,即可得出結(jié)論;
(2)同(1)得,再判斷出,進(jìn)而求出,即可得出結(jié)論;
(3)當(dāng)為等腰直角三角形時(shí),有三種情況:I.當(dāng)∠EDB=90°,DE=DB時(shí), II.當(dāng)∠BED=90°,BE=DB時(shí),當(dāng)∠EDB=90°,DE=DB時(shí),分別作出圖形,然后根據(jù)等腰三角形性質(zhì)即可求出.
解:(1)∵和都是等邊三角形(已知)
∴,,(等邊三角形的性質(zhì))。
∴(等式性質(zhì)),即,
在和中,
,
∴
∴(全等三角形對(duì)應(yīng)邊相等)
(2)∵是等邊三角形(已知)。
∴(等邊三角形的性質(zhì))。
∴(鄰補(bǔ)角的意義)
∴(等式性質(zhì))
∴同理(1)得
∴(全等三角形對(duì)應(yīng)角相等)
∴(等式性質(zhì))
(3)當(dāng)為等腰直角三角形時(shí),有三種情況:
I.當(dāng)∠EDB=90°,DE=DB時(shí),如圖③-1:
∵∠ADE=60°,
∴∠ADB=∠ADE+∠EDB=60°+90°=150°,
又∵AD=DE,
∴AD=BD,
∴∠DAB=∠ABD=;
II.當(dāng)∠BED=90°,BE=DB時(shí),如圖③-2:
在△ABE和△ADB中:
,
∴△ABE≌△ADB(SSS)
∴∠ABE=∠ABD,
∴ ;
III.當(dāng)∠EDB=90°,DE=DB時(shí),如圖③-3:
同I可得:∠ABE=15°,
∵∠EBD=,
∴∠ABD=.
綜上所述:∠ABD=或或.
故答案為:或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為6,B是數(shù)軸上在A左側(cè)的一點(diǎn),且A,B兩點(diǎn)間的距離為10.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒6個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
(1)數(shù)軸上點(diǎn)B表示的數(shù)是 ,點(diǎn)P表示的數(shù)是 (用含t的代數(shù)式表示);
(2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒4個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā).求:
①當(dāng)點(diǎn)P運(yùn)動(dòng)多少秒時(shí),點(diǎn)P與點(diǎn)Q相遇?
②當(dāng)點(diǎn)P運(yùn)動(dòng)多少秒時(shí),點(diǎn)P與點(diǎn)Q間的距離為8個(gè)單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】底邊長為6厘米,高為9厘米的等腰三角形20個(gè),迭放如圖:
每兩個(gè)等腰三角形有等距離的間隔,底邊迭合在一起的長度是44厘米.回答下列問題:
(1)兩個(gè)三角形的間隔距離;
(2)三個(gè)三角形重迭(兩次)部分的面積之和;
(3)只有兩個(gè)三角形重迭(一次)部分的面積之和;
(4)迭到一起的總面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,△ABC內(nèi)接于⊙O,AB=AC,∠BAC=36°,AB、AC的中垂線分別交⊙O于點(diǎn)E、F,證明:五邊形AEBCF是⊙O的內(nèi)接正五邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中.
(1)寫出、、三點(diǎn)的坐標(biāo):
( ),( ),( );
(2)的面積為_______.
(3)聯(lián)結(jié),在平面直角坐標(biāo)系中找一個(gè)點(diǎn),使為等腰直角三角形,且以為直角邊,則的坐標(biāo)是________(直接寫答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】家用電滅蚊器的發(fā)熱部分使用了PTC發(fā)熱材料,它的電阻R(kΩ)隨溫度t(℃)(在一定范圍內(nèi))變化的大致圖象如圖所示.通電后,發(fā)熱材料的溫度在由室溫10℃上升到30℃的過程中,電阻與溫度成反比例關(guān)系,且在溫度達(dá)到30℃時(shí),電阻下降到最小值;隨后電阻隨溫度升高而增加,溫度每上升1℃,電阻增加kΩ.
(1)求當(dāng)10≤t≤30時(shí),R和t之間的關(guān)系式;
(2)求溫度在30℃時(shí)電阻R的值;并求出t≥30時(shí),R和t之間的關(guān)系式;
(3)家用電滅蚊器在使用過程中,溫度在什么范圍內(nèi)時(shí),發(fā)熱材料的電阻不超過6 kΩ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市高中招生體育考試前教育部門為了解全市九年級(jí)男生考試項(xiàng)目的選擇情況(每人限選一項(xiàng)),對(duì)全市部分九年級(jí)男生進(jìn)行了調(diào)查,將調(diào)查結(jié)果分成五類:A、實(shí)心球(2kg);B、立定跳遠(yuǎn);C、50米跑;D、半場運(yùn)球;E、其它.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)假定全市九年級(jí)畢業(yè)學(xué)生中有5500名男生,試估計(jì)全市九年級(jí)男生中選“50米跑”的人數(shù)有多少人?
(3)甲、乙兩名九年級(jí)男生在上述選擇率較高的三個(gè)項(xiàng)目:B、立定跳遠(yuǎn);C、50米跑;D、半場運(yùn)球中各選一項(xiàng),同時(shí)選擇半場運(yùn)球和立定跳遠(yuǎn)的概率是多少?請(qǐng)用列表法或畫樹形圖的方法加以說明并列出所有等可能的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上兩點(diǎn)間的距離等于這兩個(gè)點(diǎn)所對(duì)應(yīng)的數(shù)的差的絕對(duì)值.例:點(diǎn)A、B在數(shù)軸上對(duì)應(yīng)的數(shù)分別為a、b,則A、B兩點(diǎn)間的距離表示為AB=|a﹣b|.根據(jù)以上知識(shí)解題:
(1)點(diǎn)A在數(shù)軸上表示3,點(diǎn)B在數(shù)軸上表示2,那么AB=_______.
(2)在數(shù)軸上表示數(shù)a的點(diǎn)與﹣2的距離是3,那么a=______.
(3)如果數(shù)軸上表示數(shù)a的點(diǎn)位于﹣4和2之間,那么|a+4|+|a﹣2|=______.
(4)對(duì)于任何有理數(shù)x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接寫出最小值.如果沒有.請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是“作圓的內(nèi)接正方形”的尺規(guī)作圖過程。
已知:⊙O.
求作:圓的內(nèi)接正方形.
如圖,
(1)過圓心O作直線AC,與⊙O相交于A,C兩點(diǎn);
(2)過點(diǎn)O作直線BD⊥AC,交⊙O于B,D兩點(diǎn);
(3)連接AB,BC,CD,DA。
∴四邊形ABCD為所求。
請(qǐng)回答:該尺規(guī)作圖的依據(jù)是____________________________。(寫出兩條)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com