【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)x2=3x;
(2)2x2-x-6=0;
(3)y2+3=2y;
(4)x2+2x-120=0.
【答案】(1) x=0,或x=3(2)x=2或x=;(3);(4) x=10或x=-12.
【解析】試題分析:1)先移項,再運用因式分解法求解即可;
2)運用公式法求解;
3)、4)運用因式分解法求解即可.
試題解析:1) x 2 =3x,
移項,得:x 2 -3x=0,
∴x(x-3)=0,
∴x=0,x-3=0,
解得:x1=0,x2=3;
2)2x 2- x+6=0,
這里a=2,b=-1,c=6
∴△=b2-4ac=(-1)2-4×2×(-6)=49>0
∴
即:x=2,x=;
3)y2 +3=2y,
y2 -2y+3=0,
∴(y-)2=0,
解得: ;
4)x 2 +2x-120=0,
∴(x-10)(x+12)=0,
∴x-10=0,x+12=0,
解得: , .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按照下列要求畫圖并填空:
(1)過點畫出直線的垂線,交直線于點,那么點到直線的距離是線段______________的長.
(2)作出△的邊的垂直平分線,分別交邊、于點、,聯(lián)結(jié),那么線段是△的______________.(保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明的袋子中裝有2個白球和1個紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個球(不放回),再從余下的2個球中任意摸出1個球.
(1)用樹狀圖或列表等方法列出所有可能出現(xiàn)的結(jié)果;
(2)求兩次摸到的球的顏色不同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A,B兩地被大山阻隔,若要從A地到B地,只能沿著如圖所示的公路先從A地到C地,再由C地到B地.現(xiàn)計劃開鑿隧道A,B兩地直線貫通,經(jīng)測量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道開通后與隧道開通前相比,從A地到B地的路程將縮短多少?(結(jié)果精確到0.1km,參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正多邊形每一個內(nèi)角都等于120°,則從此多邊形一個頂點出發(fā)可引的對角線的條數(shù)是( )
A.5條B.4條C.3條D.2條
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著柴靜紀(jì)錄片《穹頂之下》的播出,全社會對空氣污染問題越來越重視,空氣凈化器的銷量也大增,商社電器從廠家購進了A,B兩種型號的空氣凈化器,已知一臺A型空氣凈化器的進價比一臺B型空氣凈化器的進價多300元,用7500元購進A型空氣凈化器和用6000元購進B型空氣凈化器的臺數(shù)相同.
(1)求一臺A型空氣凈化器和一臺B型空氣凈化器的進價各為多少元?
(2)在銷售過程中,A型空氣凈化器因為凈化能力強,噪音小而更受消費者的歡迎.為了增大B型空氣凈化器的銷量,商社電器決定對B型空氣凈化器進行降價銷售,經(jīng)市場調(diào)查,當(dāng)B型空氣凈化器的售價為1800元時,每天可賣出4臺,在此基礎(chǔ)上,售價每降低50元,每天將多售出1臺,如果每天商社電器銷售B型空氣凈化器的利潤為3200元,請問商社電器應(yīng)將B型空氣凈化器的售價定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),已知任意三角形ABC,過點C作DE∥AB;
①求證:∠DCA=∠A; ②求證:∠A+∠B+∠ACB=180°;
(2)如圖(2),求證:∠AGF=∠AEF+∠F;
(3)如圖(3),AB∥CD,∠CDE=119°,GF交∠DEB的平分線EF于點F,∠AGF=150°,求∠F.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格中每個小正方形邊長為1,△ABC的頂點都在格點上.將△ABC向左平移2格,再向上平移3格,得到△A′B′C′.
(1)請在圖中畫出平移后的△A′B′C′;
(2)畫出平移后的△A′B′C′的中線B′D′
(3)若連接BB′,CC′,則這兩條線段的關(guān)系是________
(4)△ABC在整個平移過程中線段AB 掃過的面積為________
(5)若△ABC與△ABE面積相等,則圖中滿足條件且異于點C的格點E共有______個
(注:格點指網(wǎng)格線的交點)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=mx2-(m+5)x+5.
(1)求證:它的圖象與x軸必有交點,且過x軸上一定點;
(2)這條拋物線與x軸交于兩點A(x1,0),B(x2,0),且0<x1<x2,過(1) 中定點的直線L;y=x+k交y軸于點D,且AB=4,圓心在直線L上的⊙M為A、B兩點,求拋物線和直線的關(guān)系式,弦AB與弧圍成的弓形面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com