如圖,等腰梯形中,,,于點,點、分別為的中點,則下列關于點成中心對稱的一組三角形是(  )
A.B.
C.D.
C
∵點E、F分別為AO、BO的中點,∴AB=2EF,EF∥AB,∵AB∥CD,
∴CD∥EF,∴∠CDO=∠OFE,∠DCO=∠FEO,∵AB=2CD,AB=2EF,∴EF=CD,
∴△CDO≌△EFO,即關于點O成中心對稱的一組三角形是△CDO與△EFO.故選C.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在四邊形中,點,分別是的中點,分別是的中點,滿足什么條件時,四邊形是菱形?請證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知直角梯形ABCD中,AD∥BC,ÐB=90º,ÐC=60º, BC=12cm,DC=16cm,動點P沿A→D→C線路以2cm/秒的速度向C運動,動點Q沿B→C線路以1cm/秒的速度向C運動。P、Q兩點分別從A、B同時出發(fā),當其中一點到達C點時,另一點也隨之停止。設運動時間為t秒,△PQB的面積為y cm2。

(1)求AD的長及t的取值范圍;
(2)求y關于t的函數(shù)關系式;
(3)是否存在這樣的t,使得△PQB的面積為

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,分別為正方形的邊,,,上的點,且,則圖中陰影部分的面積與正方形的面積之比為(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,菱形ABCD(圖1)與菱形EFGH(圖2)的形狀、大小完全相同.
(1)請從下列序號中選擇正確選項的序號填寫;
①點E,F(xiàn),G,H;②點G,F(xiàn),E,H;③點E,H,G,F(xiàn);④點G,H,E,F(xiàn).
如果圖1經(jīng)過一次平移后得到圖2,那么點A,B,C,D對應點分別是  ;
如果圖1經(jīng)過一次軸對稱后得到圖2,那么點A,B,C,D對應點分別是  ;
如果圖1經(jīng)過一次旋轉后得到圖2,那么點A,B,C,D對應點分別是  
(2)①圖1,圖2關于點O成中心對稱,請畫出對稱中心(保留畫圖痕跡,不寫畫法);
②寫出兩個圖形成中心對稱的一條性質(zhì):   .(可以結合所畫圖形敘述).

圖1                          圖2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,平行四邊形ABCD的周長是28㎝,三角形ABC的周長是22㎝,則AC的長為
A.6㎝B.12㎝
C.4㎝D.8㎝

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,將一個邊長分別為4、8的長方形紙片ABCD折疊,使C點與A點重合,則折痕EF的長是
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,已知等腰梯形ABCD的中位線EF的長為6,腰AD的長為5,則該等腰梯形的周長為
A.11B.16C.17D.22

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,點C在x的正半軸上,點A在y軸的正半軸上,且OA=7,OC=18,現(xiàn)將點C向上平移7個單位長度再向左平移4單位長度,得到對應點B。

(1)求點B的坐標及四邊形ABCO的面積;
(2)若點P從點C以2個單位長度/秒的速度沿CO方向移動,同時點Q從點O以每秒1單位長度的速度沿OA方向移動,設移動的時間為t秒(0<t<7),四邊形OPBA與△OQB的面積分別記為S四邊形OPBA,S△OQB
①用含t的式子表示
②是否存在一段時間,使 < S△OQB,若存在,求出t的取值范圍,若不存在,試說明理由。

查看答案和解析>>

同步練習冊答案