【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(1,0),(0,1),(-1,0).一個電動玩具從坐標(biāo)原點(diǎn)O出發(fā),第一次跳躍到點(diǎn)P1,使得點(diǎn)P1與點(diǎn)O關(guān)于點(diǎn)A成中心對稱;第二次跳躍到點(diǎn)P2,使得點(diǎn)P2與點(diǎn)P1關(guān)于點(diǎn)B成中心對稱;第三次跳躍到點(diǎn)P3,使得點(diǎn)P3與點(diǎn)P2關(guān)于點(diǎn)C成中心對稱;第四次跳躍到點(diǎn)P4,使得點(diǎn)P4與點(diǎn)P3關(guān)于點(diǎn)A成中心對稱;第五次跳躍到點(diǎn)P5,使得點(diǎn)P5與點(diǎn)P4關(guān)于點(diǎn)B成中心對稱;…照此規(guī)律重復(fù)下去,則點(diǎn)P2105的坐標(biāo)為_______________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,,,把矩形ABCD繞點(diǎn)A順時針旋轉(zhuǎn),當(dāng)點(diǎn)D落在射線CB上的點(diǎn)P處時,那么線段DP的長度等于_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,AB是⊙O的直徑,點(diǎn)F在⊙O上,且滿足 ,過點(diǎn)C作⊙O的切線交AB的延長線于D點(diǎn),交AF的延長線于E點(diǎn).
(1)求證:AE⊥DE;
(2)若tan∠CBA= ,AE=3,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠B=90°,AB∥CD,M為BC邊上的一點(diǎn),且AM平分∠BAD,DM平分∠ADC.
(1)求證:AM⊥DM;
(2)若BC=8,求點(diǎn)M到AD的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,火車站、碼頭分別位于A,B兩點(diǎn),直線a和b分別表示鐵路與河流.
(1)從火車站到碼頭怎樣走最近,畫圖并說明理由;
(2)從碼頭到鐵路怎樣走最近,畫圖并說明理由;
(3)從火車站到河流怎樣走最近,畫圖并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在關(guān)于x,y的二元一次方程組 中.
(1)若a=3.求方程組的解;
(2)若S=a(3x+y),當(dāng)a為何值時,S有最值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】釣魚島歷來是中國領(lǐng)土,以它為圓心在周圍12海里范圍內(nèi)均屬于禁區(qū),不允許它國船只進(jìn)入,如圖,今有一中國海監(jiān)船在位于釣魚島A正南方距島60海里的B處海域巡邏,值班人員發(fā)現(xiàn)在釣魚島的正西方向52海里的C處有一艘日本漁船,正以9節(jié)的速度沿正東方向駛向釣魚島,中方立即向日本漁船發(fā)出警告,并沿北偏西30°的方向以12節(jié)的速度前往攔截,期間多次發(fā)出警告,2小時候海監(jiān)船到達(dá)D處,與此同時日本漁船到達(dá)E處,此時海監(jiān)船再次發(fā)出嚴(yán)重警告.
(1)當(dāng)日本漁船受到嚴(yán)重警告信號后,必須沿北偏東轉(zhuǎn)向多少度航行,才能恰好避免進(jìn)入釣魚島12海里禁區(qū)?
(2)當(dāng)日本漁船不聽嚴(yán)重警告信號,仍按原速度,原方向繼續(xù)前進(jìn),那么海監(jiān)船必須盡快到達(dá)距島12海里,且位于線段AC上的F處強(qiáng)制攔截漁船,問海監(jiān)船能否比日本漁船先到達(dá)F處?(注:①中國海監(jiān)船的最大航速為18節(jié),1節(jié)=1海里/小時;②參考數(shù)據(jù):sin26.3°≈0.44,sin20.5°≈0.35,sin18.1°≈0.31, ≈1.4, ≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),E是直線AB、CD內(nèi)部一點(diǎn),AB∥CD,連接EA、ED.
(1)探究:
①若∠A=30°,∠D=40°,則∠AED等于多少度?
②若∠A=20°,∠D=60°,則∠AED等于多少度?
③在圖(1)中∠AED、∠EAB、∠EDC有什么數(shù)量關(guān)系,并證明你的結(jié)論.
(2)拓展:如圖(2),射線FE與矩形ABCD的邊AB交于點(diǎn)E,與邊CD交于點(diǎn)F,①②③④分別是被射線FE隔開的四個區(qū)域(不含邊界,其中③④位于直線AB的上方),P是位于以上四個區(qū)域上點(diǎn),猜想:∠PEB、∠PFC、∠EPF之間的關(guān)系.(不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).
(1)在圖中作出與△ABC 關(guān)于 y 軸對稱的△A1B1C1(要求點(diǎn) A 與 A1,點(diǎn) B 與點(diǎn)B1,點(diǎn) C 和點(diǎn) C1 相對應(yīng));寫出點(diǎn) A1,B1,C1 的坐標(biāo)(直接寫答案)
(2)請求出△A1B1C1 的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com