【題目】已知如圖,在菱形中,對角線,相交于點,,.
(1)求證:四邊形是矩形;
(2)若,,求四邊形的面積.
【答案】(1)見解析;(2)四邊形AODE的面積為.
【解析】
(1)先判斷出四邊形AODE是平行四邊形,再根據(jù)菱形的對角線互相垂直可得AC⊥BD,然后根據(jù)有一個角是直角的平行四邊形是矩形可得結論;
(2)根據(jù)兩直線平行,同旁內(nèi)角互補求出∠ABC=60°,判斷出△ABC是等邊三角形,然后根據(jù)等邊三角形的性質(zhì)求出OA、OB,然后得到OD,再根據(jù)矩形的面積公式列式計算即可得解.
解:(1)∵DE∥AC,AE∥BD,
∴四邊形AODE是平行四邊形,
∵在菱形ABCD中,AC⊥BD,
∴∠AOD=90°,
∴四邊形AODE是矩形;
(2)∵∠BCD=120°,AB∥CD,
∴∠ABC=180°120°=60°,
∵AB=BC,
∴△ABC是等邊三角形,
∴OA=×6=3,OB=,
∵四邊形ABCD是菱形,
∴OD=OB=,
∴四邊形AODE的面積=OAOD=3×=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△OAB的頂點A在x軸的正半軸上,頂點B的坐標為(3, ),點C的坐標為(,0),點P為斜邊OB上的一個動點,則PA+PC的最小值為( )
A. B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平安路與幸福路是兩條平行的道路,且與新興大街垂直,老街與小米胡同垂直,書店位于老街與小米胡同的交口處,如果小強同學站在平安路與新興大街的交叉路口,準備去書店,按圖中的街道行走,最近的路程為____________ m.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題情境1:如圖1,AB∥CD,P是ABCD內(nèi)部一點,P在BD的右側,探究∠B,∠P,∠D之間的關系?
小明的思路是:如圖2,過P作PE∥AB,通過平行線性質(zhì),可得∠B,∠P,∠D之間滿足 關系.(直接寫出結論)
問題情境2
如圖3,AB∥CD,P是AB,CD內(nèi)部一點,P在BD的左側,可得∠B,∠P,∠D之間滿足 關系.(直接寫出結論)
問題遷移:請合理的利用上面的結論解決以下問題:
已知AB∥CD,∠ABE與∠CDE兩個角的角平分線相交于點F
(1)如圖4,若∠E=80°,求∠BFD的度數(shù);
(2)如圖5中,∠ABM=∠ABF,∠CDM=∠CDF,寫出∠M與∠E之間的數(shù)量關系并證明你的結論.
(3)若∠ABM=∠ABF,∠CDM=∠CDF,設∠E=m°,用含有n,m°的代數(shù)式直接寫出∠M= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=24°,∠ACB=104°,AD⊥BC交BC的延長線于點D,AE平分∠BAC.
(1)求∠DAE的度數(shù).
(2)若∠B=α,∠ACB=β,其它條件不變,請直接寫出∠DAE與α、β的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線頂點D(-1,-4),且過點C(0,-3).
(1)求此二次函數(shù)的解析式;
(2)拋物線與x軸交于點A、B,在拋物線上存在一點P使△ABP的面積為10,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC和△ADE中,AB=AD,AC=AE,∠1=∠2
(1)求證:△ABC≌△ADE;
(2)找出圖中與∠1、∠2相等的角(直接寫出結論,不需證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如下圖中的圖象(折線ABCDE)描述了一汽車在某一直路上的行駛過程中,汽車離出發(fā)地的距離S(千米)和行駛時間t(小時)之間的函數(shù)關系,根據(jù)圖中提供的信息,給出下列說法:
①汽車在途中停留了0.5小時;
②汽車行駛3小時后離出發(fā)地最遠;
③汽車共行駛了120千米;
④汽車返回時的速度是80千米/小時.
其中正確的說法共有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC中,AB=AC,∠BAC=90°,直線l經(jīng)過點A,過B、C兩點分別作直線l的垂線段,垂足分別為D、E.
(1)如圖1,△ABD與與△CAE全等嗎?請說明理由;
(2)如圖1,BD=DE+CE成立嗎?為什么?
(3)若直線AE繞A點旋轉到如圖2位置時,其它條件不變,BD與DE、CE關系如何?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com