【題目】如圖,正方形的頂點(diǎn)的坐標(biāo)為為正方形的中心;以正方形的對(duì)角線為邊,在的右側(cè)作正方形為正方形的中心;再以正方形的對(duì)角線為邊,在的右側(cè)作正方形為正方形的中心;再以正方形的對(duì)角線為邊,在的右側(cè)作正方形為正方形的中心:…;按照此規(guī)律繼續(xù)下去,則點(diǎn)的坐標(biāo)為_____

【答案】

【解析】

由題意Q11,1),O22,2),O3(,4,2),O4(,6,4),O510,4),O6148觀察可知,下標(biāo)為偶數(shù)的點(diǎn)的縱坐標(biāo)為,下標(biāo)為偶數(shù)的點(diǎn)在直線y=x+1上,點(diǎn)O2018的縱坐標(biāo)為21009,可得21009=x+1,同側(cè)x=21010-2,可得點(diǎn)O2018的坐標(biāo)為(21010-2,21009).

由題意

觀察可知,下標(biāo)為偶數(shù)的點(diǎn)的縱坐標(biāo)為,

下標(biāo)為偶數(shù)的點(diǎn)在直線上,

點(diǎn)的縱坐標(biāo)為,

,

,

點(diǎn)的坐標(biāo)為

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對(duì)稱(chēng)軸是x=1.對(duì)于下列說(shuō)法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));當(dāng)﹣1<x<3時(shí),y0,其中正確的是(  

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O

1)如圖1,E,G分別是OBOC上的點(diǎn),CEDG的延長(zhǎng)線相交于點(diǎn)F.若DFCE,求證:OEOG;

2)如圖2,HBC上的點(diǎn),過(guò)點(diǎn)HEHBC,交線段OB于點(diǎn)E,連結(jié)DHCE于點(diǎn)F,交OC于點(diǎn)G.若OEOG,

求證:∠ODG=∠OCE;

當(dāng)AB1時(shí),求HC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某報(bào)刊銷(xiāo)售處從報(bào)社購(gòu)進(jìn)甲、乙兩種報(bào)紙進(jìn)行銷(xiāo)售.已知從報(bào)社購(gòu)進(jìn)甲種報(bào)紙200份與乙種報(bào)紙300份共需360元,購(gòu)進(jìn)甲種報(bào)紙300份與乙種報(bào)紙200份共需340

1)求購(gòu)進(jìn)甲、乙兩種報(bào)紙的單價(jià);

2)已知銷(xiāo)售處賣(mài)出甲、乙兩種報(bào)紙的售價(jià)分別為每份1元、1.5元.銷(xiāo)售處每天從報(bào)社購(gòu)進(jìn)甲、乙兩種報(bào)紙共600份,若每天能全部銷(xiāo)售完并且銷(xiāo)售這兩種報(bào)紙的總利潤(rùn)不低于300元,問(wèn)該銷(xiāo)售處每天最多購(gòu)進(jìn)甲種報(bào)紙多少份?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖 1,在ABC 中,ACB90°,BCAC,點(diǎn) D AB 上,DEAB BC E,點(diǎn) F AE 的中點(diǎn)

1 寫(xiě)出線段 FD 與線段 FC 的關(guān)系并證明;

2 如圖 2,將BDE 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn)αα90°),其它條件不變,線段 FD 與線段 FC 的關(guān)系是否變化,寫(xiě)出你的結(jié)論并證明;

3 BDE 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn)一周,如果 BC4,BE2,直接寫(xiě)出線段 BF 的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)生創(chuàng)業(yè)團(tuán)隊(duì)抓住商機(jī),購(gòu)進(jìn)一批干果分裝成營(yíng)養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷(xiāo)期間發(fā)現(xiàn)每天的銷(xiāo)售量y(袋)與銷(xiāo)售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表所示,其中3.5x5.5,另外每天還需支付其他各項(xiàng)費(fèi)用80元.

銷(xiāo)售單價(jià)x(元)

3.5

5.5

銷(xiāo)售量y(袋)

280

120

1)請(qǐng)直接寫(xiě)出yx之間的函數(shù)關(guān)系式;

2)如果每天獲得160元的利潤(rùn),銷(xiāo)售單價(jià)為多少元?

3)設(shè)每天的利潤(rùn)為w元,當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),每天的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(2k+1)x+k2=0①有兩個(gè)不相等的實(shí)數(shù)根.

(1)求k的取值范圍;

(2)設(shè)方程①的兩個(gè)實(shí)數(shù)根分別為x1,x2,當(dāng)k=1時(shí),求x12+x22的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于實(shí)數(shù)m、n,定義一種運(yùn)算“※”為:mnmn+n

(1)求2※5與2※(﹣5)的值;

(2)如果關(guān)于x的方程x※(ax)=﹣有兩個(gè)相等的實(shí)數(shù)根,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案