【題目】下面是過(guò)圓上一點(diǎn)作圓的切線(xiàn)的尺規(guī)作圖過(guò)程.

已知:⊙O和⊙O上一點(diǎn)P

求作:⊙O的切線(xiàn)MN,使MN經(jīng)過(guò)點(diǎn)P

作法:如圖,

1)作射線(xiàn)OP

2)以點(diǎn)P為圓心,小于OP的長(zhǎng)為半徑作弧交射線(xiàn)OPA,B兩點(diǎn);

3)分別以點(diǎn)A,B為圓心,以大于長(zhǎng)為半徑作弧,兩弧交于M,N兩點(diǎn);

4)作直線(xiàn)MN.MN就是所求作的⊙O的切線(xiàn).

請(qǐng)回答:該尺規(guī)作圖的依據(jù)是____________________________________________________________

【答案】與一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上;經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn);兩點(diǎn)確定一條直線(xiàn).

【解析】

根據(jù)AM=BM,AN=BN,得到點(diǎn)A,B在線(xiàn)段MN的垂直平分線(xiàn)上,根據(jù)兩點(diǎn)確定一條直線(xiàn)得到直線(xiàn)MN經(jīng)過(guò)點(diǎn)P,根據(jù)切線(xiàn)的判定定理即可判定.

根據(jù)(3)可知:AM=BM,AN=BN,

點(diǎn)A,B在線(xiàn)段MN的垂直平分線(xiàn)上(與一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上),

由(2)可知,PA=PB,

則直線(xiàn)MN經(jīng)過(guò)點(diǎn)P(兩點(diǎn)確定一條直線(xiàn)),

MN是⊙O的切線(xiàn)(切線(xiàn)的判定定理)

故答案為:與一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上;經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn);兩點(diǎn)確定一條直線(xiàn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)為常數(shù),且)與軸從左至右依次交于A,B兩點(diǎn),與軸交于點(diǎn)C,經(jīng)過(guò)點(diǎn)B的直線(xiàn)與拋物線(xiàn)的另一交點(diǎn)為D.

1)若點(diǎn)D的橫坐標(biāo)為-5,求拋物線(xiàn)的函數(shù)表達(dá)式;

2)若在第一象限的拋物線(xiàn)上有點(diǎn)P,使得以A,BP為頂點(diǎn)的三角形與△ABC相似,求的值;

3)在(1)的條件下,設(shè)F為線(xiàn)段BD上一點(diǎn)(不含端點(diǎn)),連接AF,一動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿線(xiàn)段AF以每秒1個(gè)單位的速度運(yùn)動(dòng)到F,再沿線(xiàn)段FD以每秒2個(gè)單位的速度運(yùn)動(dòng)到D后停止. 當(dāng)點(diǎn)F的坐標(biāo)是多少時(shí),點(diǎn)M在整個(gè)運(yùn)動(dòng)過(guò)程中用時(shí)最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)的經(jīng)典著作,書(shū)中有一個(gè)問(wèn)題:“今有黃金九枚,白銀一十一枚,稱(chēng)之重適等.交易其一,金輕十三兩.問(wèn)金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱(chēng)重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計(jì)).問(wèn)黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( 。

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)(a≠0)交x軸于A(yíng)、B兩點(diǎn),A點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線(xiàn)于點(diǎn)G.

(1)求拋物線(xiàn)的解析式;

(2)拋物線(xiàn)的對(duì)稱(chēng)軸l在邊OA(不包括O、A兩點(diǎn))上平行移動(dòng),分別交x軸于點(diǎn)E,交CD于點(diǎn)F,交AC于點(diǎn)M,交拋物線(xiàn)于點(diǎn)P,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用含m的代數(shù)式表示PM的長(zhǎng);

(3)在(2)的條件下,連結(jié)PC,則在CD上方的拋物線(xiàn)部分是否存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和AEM相似?若存在,求出此時(shí)m的值,并直接判斷PCM的形狀;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題情境:

在綜合與實(shí)踐課上,老師讓同學(xué)們以矩形紙片的剪拼為主題開(kāi)展數(shù)學(xué)活動(dòng).如圖1,將矩形紙片沿對(duì)角線(xiàn)剪開(kāi),得到.并且量得,.

操作發(fā)現(xiàn):

(1)將圖1中的以點(diǎn)為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn),使,得到如圖2所示的,過(guò)點(diǎn)的平行線(xiàn),與的延長(zhǎng)線(xiàn)交于點(diǎn),則四邊形的形狀是________.

(2)創(chuàng)新小組將圖1中的以點(diǎn)為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn),使、、三點(diǎn)在同一條直線(xiàn)上,得到如圖3所示的,連接,取的中點(diǎn),連接并延長(zhǎng)至點(diǎn),使,連接、,得到四邊形,發(fā)現(xiàn)它是正方形,請(qǐng)你證明這個(gè)結(jié)論.

實(shí)踐探究:

(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進(jìn)行如下操作:將沿著方向平移,使點(diǎn)與點(diǎn)重合,此時(shí)點(diǎn)平移至點(diǎn),相交于點(diǎn),如圖4所示,連接,試求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在研究反比例函數(shù)的圖象與性質(zhì)時(shí),我們對(duì)函數(shù)解析式進(jìn)行了深入分析.

首先,確定自變量的取值范圍是全體非零實(shí)數(shù),因此函數(shù)圖象會(huì)被軸分成兩部分;其次,分析解析式,得到的變化趨勢(shì):當(dāng)時(shí),隨著值的增大,的值減小,且逐漸接近于零,隨著值的減小,的值會(huì)越來(lái)越大,由此,可以大致畫(huà)出時(shí)的部分圖象,如圖1所示:

利用同樣的方法,我們可以研究函數(shù)的圖象與性質(zhì). 通過(guò)分析解析式畫(huà)出部分函數(shù)圖象如圖2所示.

1)請(qǐng)沿此思路在圖2中完善函數(shù)圖象的草圖并標(biāo)出此函數(shù)圖象上橫坐標(biāo)為0的點(diǎn);(畫(huà)出網(wǎng)格區(qū)域內(nèi)的部分即可)

2)觀(guān)察圖象,寫(xiě)出該函數(shù)的一條性質(zhì):____________________;

3)若關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根,結(jié)合圖象,直接寫(xiě)出實(shí)數(shù)的取值范圍:___________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校為了提高學(xué)生跳遠(yuǎn)科目的成績(jī),對(duì)全校500名九年級(jí)學(xué)生開(kāi)展了為期一個(gè)月的跳遠(yuǎn)科目強(qiáng)化訓(xùn)練。王老師為了了解學(xué)生的訓(xùn)練情況,強(qiáng)化訓(xùn)練前,隨機(jī)抽取了該年級(jí)部分學(xué)生進(jìn)行跳遠(yuǎn)測(cè)試,經(jīng)過(guò)一個(gè)月的強(qiáng)化訓(xùn)練后,再次測(cè)得這部分學(xué)生的跳遠(yuǎn)成績(jī),將兩次測(cè)得的成績(jī)制作成圖所示的統(tǒng)計(jì)圖和不完整的統(tǒng)計(jì)表(滿(mǎn)分10,得分均為整數(shù)).

根據(jù)以上信息回答下列問(wèn)題:

(1)訓(xùn)練后學(xué)生成績(jī)統(tǒng)計(jì)表中,并補(bǔ)充完成下表:

(2)若跳遠(yuǎn)成績(jī)9分及以上為優(yōu)秀,估計(jì)該校九年級(jí)學(xué)生訓(xùn)練后比訓(xùn)練前達(dá)到優(yōu)秀的人數(shù)增加了多少?

(3)經(jīng)調(diào)查,經(jīng)過(guò)訓(xùn)練后得到9分的五名同學(xué)中,有三名男生和兩名女生,王老師要從這五名同學(xué)中隨機(jī)抽取兩名同學(xué)寫(xiě)出訓(xùn)練報(bào)告,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法,求所抽取的兩名同學(xué)恰好是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于某一函數(shù)給出如下定義:若存在實(shí)數(shù)p,當(dāng)其自變量為p時(shí),其函數(shù)值等于p,則稱(chēng)p為這個(gè)函數(shù)的不變值,在函數(shù)存在不變值時(shí),該函數(shù)的最大不變值與最小不變值之差q稱(chēng)為這個(gè)函數(shù)的不變長(zhǎng)度.特別地,當(dāng)函數(shù)只有一個(gè)不變值時(shí),其不變長(zhǎng)度q為零.

(1)判斷函數(shù)y=有沒(méi)有不變值?如果有,直接寫(xiě)出其不變長(zhǎng)度.

(2)函數(shù)y=3x2-bx

①若其不變長(zhǎng)度為零,求b的值;

②若2≤b≤5,求其不變長(zhǎng)度q的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于A(yíng)(2,m),B(-3,﹣2)兩點(diǎn).

(1)求m的值;

(2)根據(jù)所給條件,請(qǐng)直接寫(xiě)出不等式k1x+b>的解集;

(3)若P(p,y1),Q(﹣2,y2)是函數(shù)y=圖象上的兩點(diǎn), 且y1>y2,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案