(2003•常州)如圖,直線AE∥BD,點(diǎn)C在BD上,若AE=4,BD=8,△ABD的面積為16,則△ACE的面積為   
【答案】分析:根據(jù)兩平行線間的距離相等,可知兩個(gè)三角形的高相等,所以根據(jù)△ABD的面積可求出高,然后求△ACE的面積即可.
解答:解:在△ABD中,當(dāng)BD為底時(shí),設(shè)高為h,
在△AEC中,當(dāng)AE為底時(shí),設(shè)高為h′,
∵AE∥BD,
∴h=h′,
∵△ABD的面積為16,BD=8,
∴h=4.
則△ACE的面積=×4×4=8.
點(diǎn)評(píng):主要是根據(jù)兩平行線間的距離相等求出高再求三角形的面積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2003•常州)如圖,直線OC、BC的函數(shù)關(guān)系式分別為y=x和y=-2x+6,動(dòng)點(diǎn)P(x,0)在OB上移動(dòng)(0<x<3),過點(diǎn)P作直線l與x軸垂直.
(1)求點(diǎn)C的坐標(biāo);
(2)設(shè)△OBC中位于直線l左側(cè)部分的面積為s,寫出s與x之間的函數(shù)關(guān)系式;
(3)在直角坐標(biāo)系中畫出(2)中函數(shù)的圖象;
(4)當(dāng)x為何值時(shí),直線l平分△OBC的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年江蘇省常州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•常州)如圖,直線OC、BC的函數(shù)關(guān)系式分別為y=x和y=-2x+6,動(dòng)點(diǎn)P(x,0)在OB上移動(dòng)(0<x<3),過點(diǎn)P作直線l與x軸垂直.
(1)求點(diǎn)C的坐標(biāo);
(2)設(shè)△OBC中位于直線l左側(cè)部分的面積為s,寫出s與x之間的函數(shù)關(guān)系式;
(3)在直角坐標(biāo)系中畫出(2)中函數(shù)的圖象;
(4)當(dāng)x為何值時(shí),直線l平分△OBC的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年江蘇省常州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•常州)如圖,在平行四邊形ABCD中,EF∥BC,GH∥AB,EF、GH的交點(diǎn)P在BD上
圖中有______對(duì)四邊形面積相等;
他們是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年江蘇省常州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2003•常州)如圖:矩形花園ABCD中,AB=a,AD=b,花園中建有一條矩形道路LMPQ及一條平行四邊形道路RSTK.若LM=RS=c,則花園中可綠化部分的面積為( )

A.bc-ab+ac+b2
B.a(chǎn)2+ab+bc-ac
C.a(chǎn)b-bc-ac+c2
D.b2-bc+a2-ab

查看答案和解析>>

同步練習(xí)冊(cè)答案