【題目】如圖,點A是線段DE上一點,∠BAC=90°,AB=AC,BDDE,CEDE

1)求證:DE=BD+CE

2)如果是如圖2這個圖形,BDCE、DE有什么數(shù)量關系?并證明.

【答案】(1)見解析;(2)BD=DE+CE,理由見解析.

【解析】

(1)先證AEC≌△BDA得出ADCE,BDAE從而得出DEBD+CE;

(2)先證ADB≌△CEA得出ADCEBDAE,從而得出BDDE+CE

1)∵BDDECEDE,∴∠D=∠E=90°,∴∠DBA+∠DAB=90°.

∵∠BAC=90°,∴∠DAB+∠CAE=90°,∴∠DBA=∠CAE

ABAC,∴△ADB≌△CEA,∴BDAE,CEAD,∴DEAD+AECE+BD;

(2)BDDE+CE理由如下

BDDE,CEDE,∴∠ADB=∠AEC=90°,∴∠ABD+∠BAD=90°.

∵∠BAC=90°,∴∠ABD+∠EAC=90°,∴∠BAD=∠EAC

ABAC,∴△ADB≌△CEA,∴BDAE,CEAD

AEAD+DE,∴BDCE+DE

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某紙品加工廠利用邊角料裁出正方形和長方形兩種硬紙片,長方形的寬與正方形的邊長相等(如圖2),再將它們制作成甲乙兩種無蓋的長方體小盒(如圖1).現(xiàn)將300張長方形硬紙片和150張正方形硬紙片全部用于制作這兩種小盒,可以做成甲乙兩種小盒各多少個?(注:圖1中向上的一面無蓋)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DACEBC均是等邊三角形,AE、BD分別與CDCE交于點M、N,且A、CB在同一直線上,有如下結論:①ACE≌△DCB;②CMCN;③ACDN;④PC平分∠APB;⑤∠APD60°,其中正確結論有(  )

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【發(fā)現(xiàn)證明】如圖1,點E,F(xiàn)分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,F(xiàn)D之間的數(shù)量關系.

小聰把△ABE繞點A逆時針旋轉90°至△ADG,通過證明△AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD.
(1)【類比引申】如圖2,點E,F(xiàn)分別在正方形ABCD的邊CB,CD的延長線上,∠EAF=45°,連接EF,請根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EF,BE,DF之間的數(shù)量關系,并證明;

(2)【聯(lián)想拓展】如圖3,如圖,∠BAC=90°,AB=AC,點E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分10分)如圖,將□ABCD沿過點A的直線折疊,使點D落到AB邊上的點處,折痕CD邊于點E,連接BE

1)求證:四邊形是平行四邊形

2)若BE平分∠ABC,求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】八年級(1)班學生在完成課題學習“體質(zhì)健康測試中的數(shù)據(jù)分析”后,利用課外活動時間積極參加體育鍛煉,每位同學從籃球、跳繩、立定跳遠、長跑、鉛球中選一項進行訓練,訓練后都進行了測試.現(xiàn)將項目選擇情況及訓練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.

請你根據(jù)上面提供的信息回答下列問題:
(1)扇形圖中跳繩部分的扇形圓心角為度,該班共有學生人,訓練后籃球定時定點投籃平均每個人的進球數(shù)是
(2)老師決定從選擇鉛球訓練的3名男生和1名女生中任選兩名學生先進行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形ABCD中,AB4BC7,點PBC邊上與點B不重合的動點,過點P的直線交CD的延長線于點R,交AD于點Q(Q與點D不重合),且∠RPC45°.BPx,梯形ABPQ的面積為y,求yx之間的函數(shù)關系式,并求出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們約定:如果身高在選定標準的±2%范圍之內(nèi)都稱為普通身高.為了了解某校九年級男生中具有普遍身高的人數(shù),我們從該校九年級男生中隨機抽出10名男生,分別測量出他們的身高(單位:cm),收集并整理如下統(tǒng)計表:

1)計算這組數(shù)據(jù)的三個統(tǒng)計量:平均數(shù)、中位數(shù)、眾數(shù);

2)請你選擇其中一個統(tǒng)計量作為選定標準,找出這10名男生中具有普遍身高是哪幾位男生?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是兩位同學的一段對話:

聰聰:周末我們?nèi)也┪镳^參觀偉大的變革﹣﹣慶祝改革開放40周年大型展覽吧.

明明:好啊,我家離國家博物館約30km,我坐地鐵先走,地鐵的平均行駛速度是公交車的1.5倍呢.

聰聰:嗯,我周末住奶奶家,離國家博物館只有5km,坐公交車,你出發(fā)40分鐘后我再出發(fā)就能和你同時到達.

根據(jù)對話內(nèi)容,請你求出公交車和地鐵的平均行駛速度.

查看答案和解析>>

同步練習冊答案