【題目】跳遠(yuǎn)運(yùn)動(dòng)員李陽對(duì)訓(xùn)練效果進(jìn)行測試.6次跳遠(yuǎn)的成績?nèi)缦拢?/span>7.57.7,7.6,7.7,7.9,7.8(單位:m)這六次成績的平均數(shù)為7.7m,方差為.如果李陽再跳一次,成績?yōu)?/span>7.7m.則李陽這7次跳遠(yuǎn)成績的方差_____(填變大、不變變小).

【答案】變小

【解析】

根據(jù)平均數(shù)的求法 先求出這組數(shù)據(jù)的平均數(shù),再根據(jù)方差公式 求出這組數(shù)據(jù)的方差,然后進(jìn)行比較即可求出答案.

解:∵李陽再跳一次,成績?yōu)?/span>7.7m

∴這組數(shù)據(jù)的平均數(shù)是7.7,

∴這7次跳遠(yuǎn)成績的方差是:

S2[7.57.72+7.67.72+3×7.77.72+7.87.72+7.97.72],

∴方差變;

故答案為:變小.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于x的方程

(1)當(dāng)m取何值時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根?

(2)設(shè)方程的兩個(gè)實(shí)數(shù)根分別為當(dāng)時(shí)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x2+2x+3x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D.

(1)求出A、B、C三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;

(2)連接BC,與拋物線的對(duì)稱軸交于點(diǎn)E,點(diǎn)P為線段BC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)PPFDE交拋物線于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m;

①用含m的代數(shù)式表示線段PF的長,并求出當(dāng)m為何值時(shí),四邊形PEDF為平行四邊形?

②設(shè)△BCF的面積為S,求Sm的函數(shù)關(guān)系式,S是否有最大值?如有,請(qǐng)求出最大值,沒有請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,線段AB的兩個(gè)端點(diǎn)坐標(biāo)分別為(﹣2,1)和(23).

1)在圖中分別畫出線段AB關(guān)于x軸的對(duì)稱線段A1B1,并寫出A1B1的坐標(biāo).

2)在x軸上找一點(diǎn)C,使AC+BC的值最小,在圖中作出點(diǎn)C,并直接寫出點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是定長線段,圓心OAB的中點(diǎn),AE、BF為切線,E、F為切點(diǎn),滿足AE=BF,在上取動(dòng)點(diǎn)G,國點(diǎn)G作切線交AE、BF的延長線于點(diǎn)D、C,當(dāng)點(diǎn)G運(yùn)動(dòng)時(shí),設(shè)AD=y,BC=x,則yx所滿足的函數(shù)關(guān)系式為( 。

A. 正比例函數(shù)y=kx(k為常數(shù),k≠0,x>0)

B. 一次函數(shù)y=kx+b(k,b為常數(shù),kb≠0,x>0)

C. 反比例函數(shù)y=(k為常數(shù),k≠0,x>0)

D. 二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0,x>0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ABAC,∠BAC48°,∠BAC的平分線與線段AB的垂直平分線OD交于點(diǎn)O.連接OB、OC,將∠ACB沿EFEBC上,FAC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)A在第四象限,點(diǎn)Bx軸正半軸上,在△OAB中,∠OAB90°,ABAO6,點(diǎn)P為線段OA上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A和點(diǎn)O重合),過點(diǎn)POA的垂線交x軸于點(diǎn)C,以點(diǎn)C為正方形的一個(gè)頂點(diǎn)作正方形CDEF,使得點(diǎn)D在線段CB上,點(diǎn)E在線段AB上.

1)①求直線AB的函數(shù)表達(dá)式.

②直接寫出直線AO的函數(shù)表達(dá)式   ;

2)連接PF,在RtCPF中,∠CFP90°時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo)為   ;

3)在(2)的前提下,直線DPy軸于點(diǎn)H,交CF于點(diǎn)K,在直線OA上存在點(diǎn)Q.使得△OHQ的面積與△PKE的面積相等,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一列動(dòng)車從甲地開往乙地, 一列普通列車從乙地開往甲地,兩車均勻速行駛并同時(shí)出發(fā),設(shè)普通列車行駛的時(shí)間為 (小時(shí)),兩車之間的距離為 (千米),如圖中的折線表示之間的函數(shù)關(guān)系,下列說法:①動(dòng)車的速度是千米/小時(shí);②點(diǎn)B的實(shí)際意義是兩車出發(fā)后小時(shí)相遇;③甲、乙兩地相距千米;④普通列車從乙地到達(dá)甲地時(shí)間是小時(shí),其中不正確的有( )

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知平行四邊形ABCD,對(duì)角線ACBD相交于點(diǎn)O,OBC=OCB

(1)求證:平行四邊形ABCD是矩形;

(2)請(qǐng)?zhí)砑右粋(gè)條件使矩形ABCD為正方形.

查看答案和解析>>

同步練習(xí)冊(cè)答案