【題目】如圖,∠MON30°,點(diǎn)B1B2、B3…和A1、A2、A3…分別在OMON上,且△A1B1A2、△A2B2A3、△A3B3A4、…分別為等邊三角形,已知OA11,則△A2018B2018A2019的邊長為_____

【答案】

【解析】

首先由△A1B1A2、A2B2A3A3B3A4、…分別為等邊三角形,∠MON=30°,求得A1B1=OA1=1,A2B2=OA2=OA1+A1A2=2,繼而可得:△A3B3A4的邊長為4,A4B4A5的邊長為8,則可得規(guī)律:△AnBnAn+1的邊長為:2n-1;繼而求得答案.

A1B1A2是等邊三角形,

∴∠B1A1A2=60°,

∴∠OB1A1=B1A1A2MON=30°,

∴∠OB1A1=MON,

A1B1=OA1=1,

∴△A1B1A2的邊長為1,

同理:∠OB2A2=MON=30°,

A2B2=OA2=OA1+A1A2=2,

∴△A2B2A3的邊長為2,

同理可得:△A3B3A4的邊長為4,A4B4A5的邊長為8,

∴△AnBnAn+1的邊長為:2n1;

∴△A2018B2018A2019的邊長為:22017.

故答案為:22017.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=12,點(diǎn)E在邊CD上,且BG=CG,將△ADE沿AE對(duì)折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②∠EAG=450;③CE=2DE;④AG∥CF;⑤S△FGC=.其中正確結(jié)論的個(gè)數(shù)是( )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ACB中,∠ACB=90°,∠ABC的平分線BE∠BAC的外角平分線AD相交于點(diǎn)P,分別交ACBC的延長線于E,D.過PPF⊥ADAC的延長線于點(diǎn)H,交BC的延長線于點(diǎn)F,連接AFDH于點(diǎn)G.則下列結(jié)論:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正確的是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)M(﹣3,2)分別作x軸、y軸的垂線與反比例函數(shù)y= 的圖象交于A,B兩點(diǎn),則四邊形MAOB的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,M為BC上一點(diǎn),F(xiàn)是AM的中點(diǎn),EF⊥AM,垂足為F,交AD的延長線于點(diǎn)E,交DC于點(diǎn)N.

(1)求證:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,,邊上的高,則邊的長為( )

A. 4 B. 14 C. 4 或14 D. 8或14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)過某十字路口的汽車,它可能繼續(xù)直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn),這三種可能性大小相同,現(xiàn)在兩輛汽車經(jīng)過這個(gè)十字路口.
(1)請(qǐng)用“樹形圖”或“列表法”列舉出這兩輛汽車行駛方向所有可能的結(jié)果;
(2)求這兩輛汽車都向左轉(zhuǎn)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,B兩地相距60km,甲、乙兩人從兩地出發(fā)相向而行,甲先出發(fā).圖中表示兩人離A地的距離s(km)與時(shí)間t(h)的關(guān)系,請(qǐng)結(jié)合圖象解答下列問題:

(1)表示乙離A地的距離與時(shí)間關(guān)系的圖象是 (填);

(2)甲的速度是 km/h,乙的速度是 km/h;

(3)甲出發(fā)多少小時(shí)兩人恰好相距5km?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D是等邊三角形ABC內(nèi)一點(diǎn),將線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,得到線段AE,連接CD,BE.

(1)求證:∠AEB=∠ADC;

(2)連接DE,若ADC=105°,求BED的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案