【題目】如圖,在平面直角坐標系中,以坐標原點O為圓心,2為半徑畫圓,P是⊙O上一動點且在第一象限內(nèi),過點P作⊙O的切線,與x、y軸分別交于點A、B.

(1)求證:△OBP與△OPA相似;

(2)當點PAB中點時,求出P點坐標;

(3)在⊙O上是否存在一點Q,使得以Q,O,A、P為頂點的四邊形是平行四邊形.若存在,試求出Q點坐標;若不存在,請說明理由.

【答案】(1)見解析;(2)P點坐標是( );(3)存在;Q點坐標是(,).

【解析】試題分析:1)在Rt△OAB中,由切線的性質(zhì)知:OPAB,易證得OAP∽△BPO
2)當PAB中點時,由于OPAB,那么OP平分AOB,即P點的橫、縱坐標相等,已知OP的長,易求得點P的坐標.

3)此題應(yīng)分兩種情況:

OP為對角線,此時OQAP,由于OPA=90°,那么POQ=90°,即POQ是等腰直角三角形,已知OAOB,那么OBPQ,此時OBPOQ的對角線,即P、Q關(guān)于y軸對稱由此得解;

OP為邊,此時OPAQ,由于OPA=90°,那么平行四邊形OPAQ為矩形,即POQ是等腰直角三角形,解法同

解:(1)證明:

AB是過點P的切線,

ABOP,∴∠OPB=OPA=90°;

∴在RtOPB中,∠1+∠3=90°,

又∵∠BOA=90°∴∠1+∠2=90°,

∴∠2=3;

在△OPB中△APO中,

∴△OPB∽△APO.

(2)OPAB,且PA=PB,

OA=OB,

∴△AOB是等腰三角形,

OP是∠AOB的平分線,

∴點Px、y軸的距離相等;

又∵點P在第一象限,

∴設(shè)點P(x,x)(x0),

∵圓的半徑為2,

OP=,解得x=x=﹣(舍去),

P點坐標是(,).

(3)存在;

①如圖設(shè)OAPQ為平行四邊形,∴PQOA,OQPA;

ABOP,OQOP,PQOB,

∴∠POQ=90°,

OP=OQ,

∴△POQ是等腰直角三角形,

OB是∠POQ的平分線且是邊PQ上的中垂線,

∴∠BOQ=BOP=45°,

∴∠AOP=45°,

設(shè)P(x,x)、Q(﹣x,x)(x0),

OP=2代入得,解得x=,

Q點坐標是(﹣);(1分)

②如圖示OPAQ為平行四邊形,

同理可得Q點坐標是(,﹣).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某商店銷售每臺A型電腦的利潤為100元,銷售每臺B型電腦的利潤為150元,該商店計劃一次購進A,B兩種型號的電腦共100臺,設(shè)購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.

1)求yx的函數(shù)關(guān)系式;

2)該商店計劃一次購進A,B兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,那么商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場準備進一批兩種不同型號的衣服,已知購進A種型號衣服9件,B種型號衣服10件,則共需1810元;若購進A種型號衣服12件,B種型號衣服8件,共需1880元;已知銷售一件A型號衣服可獲利18元,銷售一件B型號衣服可獲利30元,要使在這次銷售中獲利不少于699元,且A型號衣服不多于28件.

(1)求A、B型號衣服進價各是多少元?

(2)若已知購進A型號衣服是B型號衣服的2倍還多4件,則商店在這次進貨中可有幾種方案并簡述購貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在第四象限內(nèi)的矩形OABC,兩邊在坐標軸上,一個頂點在一次函數(shù)y0.5x3的圖象上,當點A從左向右移動時,矩形的周長與面積也隨之發(fā)生變化,設(shè)線段OA的長為m,矩形的周長為C,面積為S

1)試分別寫出C、Sm的函數(shù)解析式,它們是否為一次函數(shù)?

2)能否求出當m取何值時,矩形的周長最大?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算 1253+-73+-137+73 2

3

4)閱讀理解:計算

解法:原式的倒數(shù)=

20351210

∴原式=

請你仿照上述方法計算:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解全校學生上學期參加生涯規(guī)劃社區(qū)活動的情況,學校隨機調(diào)查了本校50名學生參加社區(qū)活動的次數(shù),并將調(diào)查所得的數(shù)據(jù)整理如下:

參加社區(qū)活動次數(shù)的頻數(shù)、頻率

活動次數(shù)x

頻數(shù)

頻率

0<x≤3

10

0.20

3<x≤6

a

0.24

6<x≤9

16

0.32

9<x≤12

6

0.12

12<x≤15

b

m

15<x≤18

2

n

根據(jù)以上圖表信息,解答下列問題:

(1)表中a= , b= , m= , n= .

(2)請把頻數(shù)分布直方圖補充完整(畫圖后請標注相應(yīng)的數(shù)據(jù));

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:矩形ABCD中,AB=2,BC=5,E、P分別在AD、BC上,且DE=BP=1.

(1)判斷BEC的形狀,并說明理由?

(2)判斷四邊形EFPH是什么特殊四邊形?并證明你的判斷;

(3)求四邊形EFPH的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O為正方形ABCD的外接圓,E為弧BC上一點,AFDEF,連OF、OD.

(1)求證:AF=EF;

(2)若,求sinDOF的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B兩地相距480km,C地在A、B兩地之間.一輛轎車以100km/h的速度從A地出發(fā)勻速行駛,前往B.同時,一輛貨車以80km/h的速度從B地岀發(fā),勻速行駛,前往A.

(1)當兩車相遇時,求轎車行駛的時間;

(2)當兩車相距120km,求轎車行駛的時間;

(3)若轎車到達B地后,立刻以120km/h的速度原路返回,再次經(jīng)過C,兩次經(jīng)過C地的時間間隔為2.2h,C地距離A地路程.

查看答案和解析>>

同步練習冊答案