【題目】閱讀下列材料,解答問(wèn)題.
飲水問(wèn)題是關(guān)系到學(xué)生身心健康的重要生活環(huán)節(jié),東坡中學(xué)共有教學(xué)班24個(gè),平均每班有學(xué)生50人,經(jīng)估算,學(xué)生一年在校時(shí)間約為240天(除去各種節(jié)假日),春、夏、秋、冬季各60天.原來(lái),學(xué)生飲水一般都是購(gòu)純凈水(其他碳酸飲料或果汁價(jià)格更高),純凈水零售價(jià)為1.5元/瓶,每個(gè)學(xué)生春、秋、冬季平均每天買(mǎi)1瓶純凈水,夏季平均每天要買(mǎi)2瓶純凈水,學(xué)校為了減輕學(xué)生消費(fèi)負(fù)擔(dān),要求每個(gè)班自行購(gòu)買(mǎi)1臺(tái)冷熱飲水機(jī),經(jīng)調(diào)查,購(gòu)買(mǎi)一臺(tái)功率為500 W的冷熱飲水機(jī)約為150元,純凈水每桶6元,每班春、秋兩季,平均每1.5天購(gòu)買(mǎi)4桶,夏季平均每天購(gòu)買(mǎi)5桶,冬季平均每天購(gòu)買(mǎi)1桶,飲水機(jī)每天開(kāi)10小時(shí),當(dāng)?shù)孛裼秒妰r(jià)為0.50元/度.
問(wèn)題:
(1)在未購(gòu)買(mǎi)飲水機(jī)之前,全年平均每個(gè)學(xué)生要花費(fèi)多少錢(qián)來(lái)購(gòu)買(mǎi)純凈水飲用?
(2)在購(gòu)買(mǎi)飲水機(jī)解決學(xué)生飲水問(wèn)題后,每班當(dāng)年共要花費(fèi)多少元?
(3)這項(xiàng)便利學(xué)生的措施實(shí)施后,東坡中學(xué)當(dāng)年全體學(xué)生共節(jié)約多少錢(qián)?
【答案】(1)450元;(2)4830元;(3)424080元.
【解析】
(1)通過(guò)每個(gè)學(xué)生每天的用水量計(jì)算出每個(gè)季節(jié)的用水量,從而計(jì)算出全年用水量;
(2)購(gòu)買(mǎi)飲水機(jī)解決學(xué)生飲水問(wèn)題后,每班學(xué)生全年的花費(fèi)為“水費(fèi)+電費(fèi)+飲水機(jī)費(fèi)用”;
(3)原水費(fèi)-現(xiàn)在水費(fèi)=能節(jié)約的水費(fèi).
(1)因?yàn)槊總(gè)學(xué)生春、秋、冬季每天購(gòu)買(mǎi)1瓶礦泉水,夏季每天購(gòu)買(mǎi)2瓶,
所以一個(gè)學(xué)生在春、秋、冬季共要購(gòu)買(mǎi)180瓶礦泉水,夏季要購(gòu)買(mǎi)120瓶礦泉水,
所以一年中一個(gè)學(xué)生共要購(gòu)買(mǎi)300瓶礦泉水,所以一個(gè)學(xué)生全年共花費(fèi)1.5×300=450(元).
(2)購(gòu)買(mǎi)飲水機(jī)后,一年每個(gè)班所需純凈水的桶數(shù)為:春秋兩季,每1.5天4桶,則120天共要4×=320(桶).
夏季每天5桶,共要60×5=300(桶),
冬季每天1桶,共60桶,
所以全年共要純凈水(320+300+60)=680(桶),
故購(gòu)買(mǎi)礦泉水費(fèi)用為680×6=4 080(元),
使用電費(fèi)為240×10××0.5=600(元),
故每班學(xué)生全年共花費(fèi)為4 080+600+150=4 830(元).
(3)因?yàn)橐粋(gè)學(xué)生節(jié)省450-=353.4(元),
所以全體學(xué)生共節(jié)省353.4×24×50=424 080(元).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AD是弦,∠A=22.5°,延長(zhǎng)AB到點(diǎn)C,使得∠ACD=45°.
(1)求證:CD是⊙O的切線.
(2)若AB=2 ,求OC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC是等邊三角形,以AB為直徑作⊙O,交BC邊于點(diǎn)D,交AC邊于點(diǎn)F,作DE⊥AC于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若△ABC的邊長(zhǎng)為4,求EF的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AB=8cm,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別從B,C兩點(diǎn)同時(shí)出發(fā),以1cm/s的速度沿BC,CD運(yùn)動(dòng),到點(diǎn)C,D時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),△OEF的面積為s(cm2),則s(cm2)與t(s)的函數(shù)關(guān)系可用圖象表示為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,CE⊥AB,垂足分別為D,E,AD,CE交于點(diǎn)F.請(qǐng)你添加一個(gè)適當(dāng)?shù)臈l件,使△AEF≌△CEB.添加的條件是____________(寫(xiě)出一個(gè)即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在求1+2+22+23+24+25+26的值時(shí),小明發(fā)現(xiàn):從第二個(gè)加數(shù)起每一個(gè)加數(shù)都是前一個(gè)加數(shù)的2倍,于是他設(shè):S=1+2+22+23+24+25+26①然后在①式的兩邊都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.
(1)求1+3+32+33+34+35+36的值;
(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從圖 2 開(kāi)始,每一個(gè)圖形都是由基本圖形“△”通過(guò)平移或翻折拼成的:
觀察發(fā)現(xiàn),圖 10 中共有_________________個(gè)小三角形,圖 n 共有____________個(gè)小三角形,
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為BC的中點(diǎn),直角∠MDN繞點(diǎn)D旋轉(zhuǎn),DM,DN分別與邊AB,AC交于E,F兩點(diǎn),下列結(jié)論:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正確結(jié)論是( )
A. ①②④ B. ②③④
C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),直線AB分別與x軸、y軸交于點(diǎn)B和A,與反比例函數(shù)的圖象交于C、D,CE⊥x軸于點(diǎn)E,若tan∠ABO= ,OB=4,OE=2,點(diǎn)D的坐標(biāo)為(6,m).
(1)求直線AB和反比例函數(shù)的解析式;
(2)求△OCD的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com