【題目】對于長度為4的線段AB(圖1),小若用尺規(guī)進行如下操作(圖2)根據(jù)作圖痕跡,有下列說法:①△ABC是等腰三角形;②△ABC是直角三角形;③△ABC是等邊三角形;④弧AD的長度為,⑤△ABC是直角三角形的依據(jù)是直徑所對的圓周角為直角,則其中正確的個數(shù)是( 。

A.1B.2C.3D.4

【答案】C

【解析】

利用作圖得到得PQ垂直平分AB,點OAB的中點,CECB,以AB為直徑作⊙O,則CACB,所以△ABC為等腰三角形,利用圓周角定理得到∠ACB90°,則△ACB為等腰直角三角形,然后計算∠ABD22.5°,則∠AOD45°,根據(jù)弧長公式可計算出 的長度,從而可對各選項進行判斷.

解:由作法得PQ垂直平分AB,點OAB的中點,CECB,以AB為直徑作⊙O,

PQ垂直平分AB

CACB,即△ABC為等腰三角形,

AB為直徑,

∴∠ACB90°,所以⑤正確

∴△ACB為等腰直角三角形,所以①②正確,③錯誤;

CBCE,

∴∠CBE=∠CEB

∵∠OCB=∠OBC45°,

∴∠CBE180°﹣45°)=67.5°,

∴∠ABD=∠CBE﹣∠CBO67.5°﹣45°=22.5°,

∴∠AOD45°,

的長度,所以④錯誤.

故選:C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一農(nóng)戶要建一個矩形豬舍,豬舍的一邊利用長為15m的住房墻,另外三邊用27m長的建筑材料圍成,為方便進出,在垂直于住房墻的一邊留一個1m寬的門,所圍矩形豬舍的長,寬分別為多少米時,豬舍面積為96m2?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在“五四青年節(jié)”來臨之際,某校舉辦了以“我的青春我做主”為主題的演講比賽. 并從參加比賽的學生中隨機抽取部分學生的演講成績進行統(tǒng)計(等級:A:優(yōu)秀,B:良好,C:一般,D:較差),并制作了如下統(tǒng)計圖表(部分信息未給出)

等級

人數(shù)

A

m

B

20

C

n

D

10

請根據(jù)統(tǒng)計圖表中的信息解答下列問題:

(1)這次共抽取了________名參加演講比賽的學生,統(tǒng)計圖中a________,b________;

(2)若該校學生共有2000人,如果都參加了演講比賽,請你估計成績達到優(yōu)秀的有多少人?

(3)若演講比賽成績?yōu)?/span>A等級的學生中恰好有2名女生,其余的學生為男生,從A等級的學生中抽取兩名同學參加全市演講比賽,求抽中一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于,兩點,與軸交于點,,直線與拋物線交于點,,與軸交于點

1)求拋物線的解析式;

2)點是線段上的一動點(不與,重合),過點軸的垂線,交軸于點,交拋物線于點,若,線段是否存在最大值?若存在,請求出最大值,若不存在,請說明理由;

3)若軸上存在一點,使得時,求出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,已知,ABAC6,BC10EC邊上一動點(E不與點BC重合),△DEF≌△ABC.其中點A,B的對應點分別是點D、E,且點E在運動時,DE邊始終經(jīng)過點A,設EFAC相交于點G,當△AEG為等腰三角形時,則BE的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在扇形AOB中,OAOB4,∠AOB120°,點C是弧AB上的一個動點(不與點A,B重合),射線AD與扇形AOB所在⊙O相切,點P在射線AD上,連接ABOC,CP,若AP2,則CP的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P為拋物線Lyax2)(x4)(其中a為常數(shù),且a0)的頂點,Ly軸交于點C,過點Cx軸的平行線,與L交于點A,過點Ax軸的垂線,與射線OP交于點B,連接OA

1a=﹣2時,點P的坐標是   ,點B的坐標是   

2)是否存在a的值,使OAOB?若存在,求出a的值;若不存在,請說明理由

3)若△OAB的外心N的坐標為(p,q),則

①當點N在△OAB內(nèi)部時,求a的取值范圍;

②用a表示外心N的橫坐標p和縱坐標q,并求pq的關(guān)系式(不寫q的取值范圍).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知BFO的直徑,AO上(異于B、F)一點,O的切線MAFB的延長線交于點M;PAM上一點,PB的延長線交O于點C,DBC上一點且PA=PD,AD的延長線交O于點E

(1)求證:;

(2)若ED、EA的長是一元二次方程的兩根,求BE的長;

(3)若MA=,sin∠AMF=,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)yax2+bx+c的部分對應值如表:

利用該二次函數(shù)的圖象判斷,當函數(shù)值y0時,x的取值范圍是(

A.0x8B.x0x8C.2x4D.x<﹣2x4

查看答案和解析>>

同步練習冊答案