精英家教網 > 初中數學 > 題目詳情
已知:如圖,圖1是△ABC,圖2是“8字形”(將線段AB、CD相交于點O,連接AD、CB形成的圖形),圖3是一個五角星形狀,試解答下列問題:

(1)圖1的△ABC中,∠A+∠B+∠C=
180°
180°
,并證明你寫出的結論;(要有推理證明過程)
(2)圖2的“8字形”中,請直接寫出∠A、∠B、∠C、∠D之間的數量關系:
∠A+∠D=∠C+∠B
∠A+∠D=∠C+∠B
;
(3)若在圖2的條件下,作∠DAB和∠BCD的平分線AP和CP相交于點P,并且與CD、AB分別相交于M、N(如圖4).請直接寫出∠P與∠D、∠B之間數量關系:
∠P=
1
2
(∠D+∠B)
∠P=
1
2
(∠D+∠B)

(4)圖3中的點A向下移到線段BE上時,請直接寫出∠CAD+∠B+∠C+∠D+∠E=
180°
180°
分析:(1)先過A點作EF∥BC,根據兩直線平行,內錯角相等得出∠B=∠EAB,∠C=∠CAF,再根據∠EAB+∠A+∠CAF=180°,即可證出∠A+∠B+∠C的度數;
(2)根據三角形內角和定理即可得出∠A+∠D=∠C+∠B;
(3)根據角平分線的性質得出∠1=∠2,∠3=∠4,再根據對頂角的性質,得出∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B,即可得出∠D-∠P=∠P-∠B,最后進行整理即可.
(4)根據兩個內角之和等于和它不相鄰的一個外角得出∠CAD+∠D=∠CFG,∠B+∠E=∠CGF,再根據三角形內角和定理,即可得出答案.
解答:解:(1)過A點作EF∥BC,
∵EF∥BC,
∴∠B=∠EAB,∠C=∠CAF,
∵∠EAB+∠A+∠CAF=180°,
∴∠A+∠B+∠C=180°;

(2)∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°,
又∵∠AOD=∠BOC(對頂角相等),
∴∠A+∠D=∠C+∠B;

(3)∵AP、CP是∠DAB、∠BCD的平分線,
∴∠1=∠2,∠3=∠4,
∵∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B,
∴∠D-∠P=∠P-∠B,
∴∠P=
1
2
(∠D+∠B);


(4)∵∠CAD+∠D=∠CFG,∠B+∠E=∠CGF,
又∵∠C+∠CFG+∠CGF=180°,
∴∠CAD+∠B+∠C+∠D+∠E=180°;
故答案為:180°,∠A+∠D=∠C+∠B,∠P=
1
2
(∠D+∠B),180°.
點評:此題考查了三角形內角和定理和三角形的外交的性質,掌握三角形的內角和定理以及角平分線的定義以及三角形的外交的性質是本題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

閱讀下列材料:
   李老師提出一個問題:“已知:如圖1,AB=m(m>0),∠BAC=α(α為銳角),在射線AC上取一點D,使構成的△ABD唯一確定,試確定線段BD的取值范圍.”
   小明同學說出了自己的解題思路:以點B為圓心,以m為半徑畫圓(如圖2所示),D為⊙B與射線AC的交點(不與點A重合),連結BD,所以,當BD=m時,構成的△ABD是唯一確定的.
    李老師說:“小明同學畫出的三角形是正確的,但是他的解答不夠全面.”

對于李老師所提出的問題,請給出你認為正確的解答(寫出BD的取值范圍,并在備用圖中畫出對應的圖形,不寫作法,保留作圖痕跡).

查看答案和解析>>

科目:初中數學 來源: 題型:

(本題滿分8分)

已知:如圖8,AD是△ABC外接圓⊙O的直徑,AE是△ABC的邊BC上的高,DF⊥ BC,F為垂足. 

  (1)求證:BF=EC;

   (2)若C點是AD的中點,且DF=3AE=3,求BC的長.

 

查看答案和解析>>

科目:初中數學 來源: 題型:

(本題滿分8分)
已知:如圖8,AD是△ABC外接圓⊙O的直徑,AE是△ABC的邊BC上的高,DF⊥ BC,F為垂足. 

(1)求證:BF=EC;
(2)若C點是AD的中點,且DF=3AE=3,求BC的長.

查看答案和解析>>

科目:初中數學 來源:2010-2011學年廣東省初三上學期期末數學卷 題型:解答題

(本題滿分8分)

已知:如圖8,AD是△ABC外接圓⊙O的直徑,AE是△ABC的邊BC上的高,DF⊥ BC,F為垂足. 

  (1)求證:BF=EC;

    (2)若C點是AD的中點,且DF=3AE=3,求BC的長.

 

查看答案和解析>>

同步練習冊答案