【題目】將一塊正方形和一塊等腰直角三角形如圖1擺放.

(1)如果把圖1中的△BCN繞點(diǎn)B逆時針旋轉(zhuǎn)90°,得到圖2,則∠GBM=

(2)將△BEF繞點(diǎn)B旋轉(zhuǎn).
①當(dāng)M,N分別在AD,CD上(不與A,D,C重合)時,線段AM,MN,NC之間有一個不變的相等關(guān)系式,請你寫出這個關(guān)系式:;(不用證明)
②當(dāng)點(diǎn)M在AD的延長線上,點(diǎn)N在DC的延長線時(如圖3),①中的關(guān)系式是否仍然成立?若成立,寫出你的結(jié)論,并說明理由;若不成立,寫出你認(rèn)為成立的結(jié)論,并說明理由.

【答案】
(1)45°
(2)MN=AM+CN
【解析】解:(1)在正方形ABCD和等腰直角△BEF中,
∵∠ABC=90°,
∴∠EBF=45°,
∴∠ABM+∠CBN=45°,
由旋轉(zhuǎn)的性質(zhì)得∠GBA=∠CBN,
∴∠ABM+∠GBA=45°,
即∠GBM=45°,
所以答案是:45°;
⑵①AM+NC=MN;
理由:∵把圖1中的△BCN繞點(diǎn)B逆時針旋轉(zhuǎn)90°得到△ABG,
∴∠GAB=∠C=90°,AG=CN,BG=BN,∠ABG=∠CBN,
∴∠GAB+∠DAB=180°,
∴D,A,G三點(diǎn)共線,
∴∠ABM+∠GBA=45°,
∴∠GBM=∠MBN,
在△GBM與△NBM中, ,
∴△GBM≌△NBM,
∴GM=MN,
∵GM=AG+AM=CN+AM,
∴MN=AM+CN;
所以答案是:MN=AM+CN;
②上面的式子不成立,結(jié)論是:AM﹣NC=MN,
理由:在AM上截取AG,使得AG=CN,連結(jié)BG;
∵四邊形ABCD是正方形,
∴AB=BC,∠A=∠BCN=90°,
在△BAG與△BCN中, ,
∴△BAG≌△BCN,
∴BG=BN,∠ABG=∠NBC,
∴∠MBN=∠MBC+∠CBN=∠MBC+∠ABG=45°=∠GBM,
在△BGM與△BMN中,
,
∴△BGM≌△BNM,
∴GM=NM,
∴AM﹣CN=MN.

【考點(diǎn)精析】本題主要考查了正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)的相關(guān)知識點(diǎn),需要掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在方格紙中,隨機(jī)選擇標(biāo)有序號①②③④⑤中的一個小正方形涂黑,與圖中陰影部分構(gòu)成軸對稱圖形的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購買60件A商品和30件B商品共用了1080元,購買50件A商品和20件B商品共用了880元
(1)A商品的單價是元,B商品的單價是
(2)已知該商店購買B商品的件數(shù)比購買A商品的件數(shù)的2倍少4件,設(shè)購買A商品的件數(shù)為x件,該商店購買的A、B兩種商品的總費(fèi)用為y元 ①求y與x的函數(shù)關(guān)系式
②如果需要購買A、B兩種商品的總件數(shù)不少于32件,且該商店購買的A、B兩種商品的總費(fèi)用不超過296元,求購買B商品最多有多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)D為等腰直角ABC內(nèi)一點(diǎn),CAD=CBD=15°,E為AD延長線上的一點(diǎn),且CE=CA

1求證:DE平分BDC;

2若點(diǎn)M在DE上,且DC=DM,求證:ME=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯子斜靠在與地面垂直(垂足為O)的墻上,當(dāng)梯子位于AB位置時,它與地面所成的角∠ABO=60°;當(dāng)梯子底端向右滑動1m(即BD=1m)到達(dá)CD位置時,它與地面所成的角∠CDO=45°,求梯子的長(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形A1B1C1O,A2B2C2C1 , A3B3C3C2 , …按如圖的方式放置.點(diǎn)A1 , A2 , A3 , …和點(diǎn)C1 , C2 , C3 , …分別在直線y=x+1和x軸上,則點(diǎn)B6的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計(jì)劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費(fèi);超過1千克,超過的部分按每千克15元收費(fèi).乙公司表示:按每千克16元收費(fèi),另加包裝費(fèi)3元.設(shè)小明快遞物品x千克.
(1)請分別寫出甲、乙兩家快遞公司快遞該物品的費(fèi)用y(元)與x(千克)之間的函數(shù)關(guān)系式;
(2)小明選擇哪家快遞公司更省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究:
①新知學(xué)習(xí)
若把將一個平面圖形分為面積相等的兩個部分的直線叫做該平面圖形的“面線”,其“面線”被該平面圖形截得的線段叫做該平面圖形的“面徑”(例如圓的直徑就是圓的“面徑”).
②解決問題

已知等邊三角形ABC的邊長為2.
(1)如圖一,若AD⊥BC,垂足為D,試說明AD是△ABC的一條面徑,并求AD的長;
(2)如圖二,若ME∥BC,且ME是△ABC的一條面徑,求面徑ME的長;
(3)如圖三,已知D為BC的中點(diǎn),連接AD,M為AB上的一點(diǎn)(0<AM<1),E是DC上的一點(diǎn),連接ME,ME與AD交于點(diǎn)O,且SMOA=SDOE
①求證:ME是△ABC的面徑;
②連接AE,求證:MD∥AE;
(4)請你猜測等邊三角形ABC的面徑長l的取值范圍(直接寫出結(jié)果)

查看答案和解析>>

同步練習(xí)冊答案