【題目】在△ABC中,AB邊的垂直平分線l1BCD,AC邊的垂直平分線l2BCEl1l2相交于點O.△ADE的周長為6cm

1)求BC的長;

2)分別連結OA、OBOC,若△OBC的周長為16cm,求OA的長.

【答案】16;(25.

【解析】

1)先根據(jù)線段垂直平分線的性質(zhì)得出AD=BD,AE=CE,再根據(jù)AD+DE+AE=BD+DE+CE即可得出結論;

2)先根據(jù)線段垂直平分線的性質(zhì)得出OA=OC=OB,再由OBC的周長為16cm求出OC的長,進而得出結論.

(1)DF、EG分別是線段AB、AC的垂直平分線,

AD=BD,AE=CE,

AD+DE+AE=BD+DE+CE=BC,

∵△ADE的周長為6cm,即AD+DE+AE=6cm,

BC=6cm;

(2)AB邊的垂直平分線l1BCD,AC邊的垂直平分線l2BCE,

OA=OC=OB,

∵△OBC的周長為16cm,即OC+OB+BC=16,

OC+OB=166=10,

OC=5,

OA=OC=OB=5.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC的周長是16,OB、OC分別平分∠ABC∠ACB,OD⊥BCDOD=2,△ABC的面積是________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,延長AB至點D,使DB=AB,連接CD,以CD為邊作△CDE,其中CD=CE,∠DCE=90°,連接BE

(1)求證:△ACD≌△BCE.

(2)AB=6cm,則BE=______cm

(3)BEAD有何位置關系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 某學校為了改善辦學條件,計劃采購A,B兩種型號的空調(diào),已知采購3A型空調(diào)和2B型空調(diào)共需3.9萬元;采購4A型空調(diào)比采購5B空調(diào)的費用多0.6萬元.

1)求A型空調(diào)和B型空調(diào)每臺各需多少萬元;

2)若學校計劃采購AB兩種型號空調(diào)共30臺,且采購總費用不少于20萬元不足21萬元,請求出共有那些采購方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線yx2與拋物線yax2bx6(a≠0)相交于點A(, ),B(4,m),點P是線段AB上異于A,B的動點,過點PPCx軸于點D,交拋物線于點C.

(1)求拋物線的解析式;

(2)是否存在這樣的P點,使線段PC的長有最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學活動課上,小明提出這樣一個問題:∠B=C=90°,EBC的中點,DE平分∠ADC,如圖,則下列說法正確的有( 。﹤

(1)AE平分∠DAB;(2)EBA≌△DCE;(3)AB+CD=AD;(4)AEDE;(5)ABCD.

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在三角形ABC中,AB=6,AC=BC=5,以BC為直徑作⊙OAB于點D,交AC于點G,直線DF是⊙O的切線,D為切點,交CB的延長線于點E.

(1)求證:DFAC;

(2)求tanE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲.乙兩家體育用品商店出售同樣的乒乓球拍和乒乓球,乒乓球拍每副定價20元,乒乓球每盒定價5元.現(xiàn)兩家商店搞促銷活動,甲店的優(yōu)惠辦法是:每買一副乒乓球拍贈一盒乒乓球;乙店的優(yōu)惠辦法是:按定價的9折出售.某班需購買乒乓球拍4副,乒乓球若干盒(不少于4盒).

1)用代數(shù)式表示(所填式子需化簡):當購買乒乓球的盒數(shù)為盒時,在甲店購買需付款   元;在乙店購買需付款   元.

2)當購買乒乓球盒數(shù)為10盒時,到哪家商店購買比較合算?說出你的理由.

3)當購買乒乓球盒數(shù)為10盒時,你能給出一種更為省錢的購買方案嗎?試寫出你的購買方案,并求出此時需付款幾元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形ABCD中,AB=2,BC=1,運點P從點B出發(fā),沿路線BCD作勻速運動,那么ABP的面積與點P運動的路程之間的函數(shù)圖象大致是( ).

A. B. C. D.

查看答案和解析>>

同步練習冊答案