【題目】某商場開業(yè)后經(jīng)歷了從虧損到盈利的過程,圖像刻畫了該店開業(yè)以來累計利潤(萬元)與開業(yè)時間(月)之間的關(guān)系(累計利潤是指前個月利潤總和).
(1)求與之間的函數(shù)關(guān)系式;
(2)截止到第幾個月,累計利潤可達(dá)16萬元?
(3)求第9個月的利潤.
【答案】(1)S=t2﹣2t;(2)截止到第8個月公司累積利潤可達(dá)30萬元;(3)第9個月的利潤是6.5萬元.
【解析】
(1)本題是通過構(gòu)建函數(shù)模型解答銷售利潤的問題,應(yīng)根據(jù)圖象以及題目中所給的信息來列出S與t之間的函數(shù)關(guān)系式;
(2)把S=30代入累計利潤S=t2﹣2t的函數(shù)關(guān)系式里,求得月份;
(3)分別把t=9,t=8,代入函數(shù)解析S=t2﹣2t,再把總利潤相減就可得出.
解(1)設(shè)其函數(shù)關(guān)系式為:S=a(t﹣2)2﹣2.
∵所求函數(shù)關(guān)系式的圖象過(0,0),
代入得:
a(0﹣2)2﹣2=0,
解得a=,
∴所求函數(shù)關(guān)系式為:S=(t﹣2)2﹣2,即S=t2﹣2t.
答:累積利潤S與時間t之間的函數(shù)關(guān)系式為:S=t2﹣2t;
(2)把S=16代入S=(t﹣2)2﹣2,
得 (t﹣2)2﹣2=16.
解得t1=8,t2=﹣4(舍去).
答:截止到第8個月公司累積利潤可達(dá)30萬元.
(3)把t=9代入關(guān)系式,
得S=×92﹣2×9=22.5,
由(2)可知t=8時,累計利潤16萬元
22.5﹣16=6.5,
答:第9個月的利潤是6.5萬元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“國際無煙日”來臨之際,小明就公眾對在餐廳吸煙的態(tài)度進(jìn)行了調(diào)查,并將調(diào)查結(jié)果制作成如圖所示的統(tǒng)計圖,請你根據(jù)圖中信息回答:
(1)被調(diào)查者中,不吸煙者贊成在餐廳徹底禁煙的人數(shù)是 .
(2)被調(diào)查者中,希望在餐廳設(shè)立吸煙室的人數(shù)是 .
(3)求被調(diào)查者中贊成在餐廳徹底禁煙的頻率.
(4)眉山市現(xiàn)有人口約380萬,根據(jù)圖中信息估計眉山市現(xiàn)有人口中贊成在餐廳徹底禁煙的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程.
(1)證明該方程一定有兩個不相等的實數(shù)根;
(2)設(shè)該方程兩根為x1、x2(x1<x2).
①當(dāng)時,試確定y值的范圍;
②如圖,平面直角坐標(biāo)系中有三點A、B、C,坐標(biāo)分別為(x1,0)、(x2,3)、(7,0).以點C為圓心,2個單位長度為半徑的圓與直線AB相切,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩位同學(xué)在足球場上游戲,兩人的運動路線如圖1所示,其中AC=DB,小王從點A出發(fā)沿線段AB運動到點B,小林從點C出發(fā),以相同的速度沿⊙O逆時針運動一周回到點C,兩人同時開始運動,直到都停止運動時游戲結(jié)束,其間他們與點C的距離y與時間x(單位:秒)的對應(yīng)關(guān)系如圖2所示,結(jié)合圖象分析,下列說法正確的是( )
A. 小王的運動路程比小林的長
B. 兩人分別在秒和秒的時刻相遇
C. 當(dāng)小王運動到點D的時候,小林已經(jīng)過了點D
D. 在秒時,兩人的距離正好等于的半徑
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,分別是兩邊的中點,如果上的所有點都在的內(nèi)部或邊長,則稱為的中內(nèi)弧.例如下圖中是的一條中內(nèi)。
(1)如圖,在中,,,分別是,的中點.畫出的最長的中內(nèi)弧,并直接寫出此時的長;
(2)在平面直角坐標(biāo)系中,已知點,,,,,分別是,,的中點.
①若,直接寫出的中內(nèi)弧所在圓的圓心的縱坐標(biāo)的取值范圍;
②若在中存在一條中內(nèi)弧,使得所在圓的圓心在的內(nèi)部或邊長,直接寫出的取值范圍;
③若在中存在一條中內(nèi)弧,使得所在圓的圓心在的內(nèi)部或邊長,則的最小值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點D在⊙O的直徑AB延長線上,點C在⊙O上,過點D作ED⊥AD,與AC的延長線相交于點E,且CD=DE.
(1)求證:CD為⊙O的切線;
(2)若AB=12,且BC=CE時,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店銷售一種水果的成本價是5元/千克,在銷售中發(fā)現(xiàn),當(dāng)這種水果的價格定為7元/千克時,每天可以賣出160千克,在此基礎(chǔ)上,這種水果的單價每提高1元/千克,該水果店每天就會少賣出20千克,設(shè)這種水果的單價為元(),
(1)請用含的代數(shù)式表示:每千克水果的利潤 元及每天的銷售量 千克.
(2)若該水果店一天銷售這種水果所獲得的利潤是420元,為了讓利于顧客,單價應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,探究函數(shù)y=x2+ax﹣4|x+b|+4(b<0)的圖象和性質(zhì):
(1)下表給出了部分x,y的取值;
x | L | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | L |
y | L | 3 | 0 | ﹣1 | 0 | 3 | 0 | ﹣1 | 0 | 3 | L |
由上表可知,a= ,b= ;
(2)用你喜歡的方式在坐標(biāo)系中畫出函數(shù)y=x2+ax﹣4|x+b|+4的圖象;
(3)結(jié)合你所畫的函數(shù)圖象,寫出該函數(shù)的一條性質(zhì);
(4)若方程x2+ax﹣4|x+b|+4=x+m至少有3個不同的實數(shù)解,請直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD2=CACB;
(2)求證:CD是⊙O的切線;
(3)過點B作⊙O的切線交CD的延長線于點E,若BC=12,tan∠CDA=,求BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com