【題目】如圖,若∠AOB=∠ACB=90°,OC平分∠AOB.
(1)你能將四邊形AOBC通過(guò)剪裁拼成一個(gè)正方形嗎?畫出裁剪方法并有必要的說(shuō)明。
(2)若OC=2,你能求出四邊形AOBC的面積嗎?
【答案】
(1)解:如圖所示:
作CN⊥OA,CM⊥OB
∵ ∠ AOB = ∠ ACB = 9 0 °
∴ ∠ 3 + ∠ 4 = 18 0 ° ,
∵ ∠ 5 + ∠ 4 = 18 0 °
∴ ∠ 3 = ∠ 5 ,
∵ OC平分∠AOB
∴ CM = CN ,
∵ ∠ ANC = ∠ CMB = 9 0 ,
∴ △CAN≌△CMB,
∴四邊形CNOM就是拼成的正方形,
∴ 四邊形AOBC的面積等于正方形CNOM
(2)解:設(shè)正方形CNOM的邊長(zhǎng)為:x,OC=2,由勾股定理可知: x 2 + x 2 = 4 , x 2 = 2 ,∴四邊形AOBC的面積等于2
【解析】(1)如圖,作CN⊥OA,CM⊥OB,根據(jù)四邊形的內(nèi)角和定理可得∠B+∠OAC=18 0 ° ,由鄰補(bǔ)角的性質(zhì)可得OAC+CAN=18 0 °,根據(jù)同角的補(bǔ)角相等可得∠B=CAN,根據(jù)角平分線上的點(diǎn)到角兩邊的距離相等可得CM = CN ,用角角邊可證△CAN≌△CMB,則四邊形CNOM就是拼成的正方形。
(2)由(1)知,四邊形AOBC的面積=正方形CNOM的面積,正方形CNOM的面積=,在直角三角形OMC中,由勾股定理可求的值為2,所以四邊形AOBC的面積為2。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于“線段、角、正方形、平行四邊形、圓”這些圖形中,其中是軸對(duì)稱圖形的個(gè)數(shù)為( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將點(diǎn)A(-3,-2)向右平移5個(gè)單位,得到點(diǎn)B,再把點(diǎn)B向上平移4個(gè)單位得到點(diǎn)C,則點(diǎn)C的坐標(biāo)為( )
A. (2,2)B. (-2,-2)C. (-3,2)D. (3,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若8×2x=5y+6 , 那么當(dāng)y=﹣6時(shí),x應(yīng)等于( 。
A.-4
B.-3
C.0
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖①,在平面直角坐標(biāo)系xOy中,A(0,5),C(,0),AOCD為矩形,AE垂直于對(duì)角線OD于E,點(diǎn)F是點(diǎn)E關(guān)于y軸的對(duì)稱點(diǎn),連AF、OF.
(1)求AF和OF的長(zhǎng);
(2)如圖②,將△OAF繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一個(gè)角α(0°<α<180°),記旋轉(zhuǎn)中的△OAF為△OA′F′,在旋轉(zhuǎn)過(guò)程中,設(shè)A′F′所在的直線與線段AD交于點(diǎn)P,與線段OD交于點(diǎn)Q,是否存在這樣的P、Q兩點(diǎn),使△DPQ為等腰三角形?若存在,求出此時(shí)點(diǎn)P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了測(cè)量出大樓AB的高度,從距離樓底B處50米的點(diǎn)C(點(diǎn)C與樓底B在同一水平面上)出發(fā),沿傾斜角為30°的斜坡CD前進(jìn)20米到達(dá)點(diǎn)D,在點(diǎn)D處測(cè)得樓頂A的仰角為64°,求大樓AB的高度(結(jié)果精確到1米)(參考數(shù)據(jù):sin64°≈0.9,cos64°≈0.4,tan64°≈2.1, ≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,對(duì)角線相交于點(diǎn)O;E、F、G、H分別是AD、BD、 BC、AC的中點(diǎn).
(1)說(shuō)明四邊形EFGH是平行四邊形;
(2)當(dāng)四邊形ABCD滿足一個(gè)什么條件時(shí),四邊形EFGH是菱形?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料,并回答問(wèn)題
如圖,有一根木棒MN放置在數(shù)軸上,它的兩端M、N分別落在點(diǎn)A、B.將木棒在數(shù)軸上水平移動(dòng),當(dāng)點(diǎn)M移動(dòng)到點(diǎn)B時(shí),點(diǎn)N所對(duì)應(yīng)的數(shù)為20,當(dāng)點(diǎn)N移動(dòng)到點(diǎn)A時(shí),點(diǎn)M所對(duì)應(yīng)的數(shù)為5.
(單位:cm)
由此可得,木棒長(zhǎng)為__________cm.
借助上述方法解決問(wèn)題:
一天,美羊羊去問(wèn)村長(zhǎng)爺爺?shù)哪挲g,村長(zhǎng)爺爺說(shuō):“我若是你現(xiàn)在這么大,你還要40年才出生呢,你若是我現(xiàn)在這么大,我已經(jīng)是老壽星了,116歲了,哈哈!”美羊羊納悶,村長(zhǎng)爺爺?shù)降资嵌嗌贇q?
(1)請(qǐng)你畫出示意圖,求出村長(zhǎng)爺爺和美羊羊現(xiàn)在的年齡.
(2)若羊村中的小羊均與美羊羊同歲,老羊均與村長(zhǎng)爺爺同歲。灰太狼計(jì)劃為全家抓5只羊,綜合考慮口感和生長(zhǎng)周期等因素,決定所抓羊的年齡之和不超過(guò)112歲且高于34歲。請(qǐng)問(wèn)灰太狼有幾種抓羊方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的分式方程 + = .
(1)若方程的增根為x=2,求m的值;
(2)若方程有增根,求m的值;
(3)若方程無(wú)解,求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com