如圖,梯形ABCD中,DC∥AB,點(diǎn)E是BC的中點(diǎn),連接AE并延長(zhǎng)與DC的延長(zhǎng)線相交于點(diǎn)F,連接BF,AC.求證:四邊形ABFC是平行四邊形.

【答案】分析:根據(jù)點(diǎn)E是BC的中點(diǎn)即可求出BE=CE,又知AB∥CD,故可得∠1=∠2,∠3=∠4,于是證得△ABE≌△FCE,進(jìn)一步得到AB=CF,結(jié)合梯形的知識(shí)即可證得四邊形ABFC是平行四邊形.
解答:證明:∵點(diǎn)E是BC的中點(diǎn),
∴BE=CE,
又∵AB∥CD,
∴∠1=∠2,∠3=∠4,
∴△ABE≌△FCE,
∴AB=CF,
又∵梯形ABCD中 AB∥CD,
∴四邊形ABFC是平行四邊形.
點(diǎn)評(píng):本題主要考查梯形、平行四邊形及全等三角形的判定與性質(zhì),解答本題的關(guān)鍵是熟練掌握各種四邊形的性質(zhì)以及判定方法,此題難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,則CD的長(zhǎng)為(  )
A、
8
6
3
B、4
6
C、
8
2
3
D、4
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、已知:如圖,梯形ABCD中,AD∥BC,AB=DC,AC、BD相交于點(diǎn)O,那么,圖中全等三角形共有
3
對(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,梯形ABCD中,AD∥BC,BD為對(duì)角線,中位線EF交BD于O點(diǎn),若FO-EO=3,則BC-AD等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,梯形ABCD中,已知AD∥BC,∠A=90°,AB=7,AD=2,cosC=
2
10

(1)求BC的長(zhǎng);
(2)試在邊AB上確定點(diǎn)P的位置,使△PAD∽△PBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,梯形ABCD中,AD∥BC,BC=5,AD=3,對(duì)角線AC⊥BD,且∠DBC=30°,求梯形ABCD的高.

查看答案和解析>>

同步練習(xí)冊(cè)答案