【題目】(本小題滿(mǎn)分10分)如圖,一次函數(shù)的圖象與反比例函數(shù)為常數(shù),且)的圖象交于A1,a)、B兩點(diǎn).

1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);

2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿(mǎn)足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.

【答案】1,;(2P,

【解析】

試題(1)由點(diǎn)A在一次函數(shù)圖象上,結(jié)合一次函數(shù)解析式可求出點(diǎn)A的坐標(biāo),再由點(diǎn)A的坐標(biāo)利用待定系數(shù)法即可求出反比例函數(shù)解析式,聯(lián)立兩函數(shù)解析式成方程組,解方程組即可求出點(diǎn)B坐標(biāo);

2)作點(diǎn)B作關(guān)于x軸的對(duì)稱(chēng)點(diǎn)D,交x軸于點(diǎn)C,連接AD,交x軸于點(diǎn)P,連接PB.由點(diǎn)BD的對(duì)稱(chēng)性結(jié)合點(diǎn)B的坐標(biāo)找出點(diǎn)D的坐標(biāo),設(shè)直線(xiàn)AD的解析式為y=mx+n,結(jié)合點(diǎn)AD的坐標(biāo)利用待定系數(shù)法求出直線(xiàn)AD的解析式,令直線(xiàn)AD的解析式中y=0求出點(diǎn)P的坐標(biāo),再通過(guò)分割圖形結(jié)合三角形的面積公式即可得出結(jié)論.

試題解析:(1)把點(diǎn)A1,a)代入一次函數(shù)y=-x+4

得:a=-1+4,解得:a=3

點(diǎn)A的坐標(biāo)為(13).

把點(diǎn)A13)代入反比例函數(shù)y=,

得:3=k,

反比例函數(shù)的表達(dá)式y=

聯(lián)立兩個(gè)函數(shù)關(guān)系式成方程組得:,

解得:,或

點(diǎn)B的坐標(biāo)為(3,1).

2)作點(diǎn)B作關(guān)于x軸的對(duì)稱(chēng)點(diǎn)D,交x軸于點(diǎn)C,連接AD,交x軸于點(diǎn)P,此時(shí)PA+PB的值最小,連接PB,如圖所示.

點(diǎn)B、D關(guān)于x軸對(duì)稱(chēng),點(diǎn)B的坐標(biāo)為(3,1),

點(diǎn)D的坐標(biāo)為(3- 1).

設(shè)直線(xiàn)AD的解析式為y=mx+n

A,D兩點(diǎn)代入得:

解得:,

直線(xiàn)AD的解析式為y=-2x+5

y=-2x+5y=0,則-2x+5=0,

解得:x=,

點(diǎn)P的坐標(biāo)為(,0).

SPAB=SABD-SPBD=BDxB-xA-BDxB-xP

=×[1--13-1-×[1--13-

=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的盒子里有5個(gè)小球,分別標(biāo)有數(shù)字﹣3,﹣2,﹣1,﹣,﹣,這些小球除所標(biāo)的數(shù)不同外其余都相同,先從盒子隨機(jī)摸出1個(gè)球,記下所標(biāo)的數(shù),再?gòu)氖O碌那蛑须S機(jī)摸出1個(gè)球,記下所標(biāo)的數(shù).

(1)用畫(huà)樹(shù)狀圖或列表的方法求兩次摸出的球所標(biāo)的數(shù)之積不大于1的概率.

(2)若以第一次摸出球上的數(shù)字為橫坐標(biāo),第二次摸出球上的數(shù)字為縱坐標(biāo)確定一點(diǎn),直接寫(xiě)出該點(diǎn)在雙曲線(xiàn)y=上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校部分團(tuán)員參加社會(huì)公益活動(dòng),準(zhǔn)備購(gòu)進(jìn)一批許愿瓶進(jìn)行銷(xiāo)售,并將所得利潤(rùn)捐給慈善機(jī)構(gòu).根據(jù)市場(chǎng)調(diào)查,這種許愿瓶一段時(shí)間內(nèi)的銷(xiāo)售量y個(gè))與銷(xiāo)售單價(jià)x(元/個(gè))之間的對(duì)應(yīng)關(guān)系如圖所示:

(1)試判斷yx之間的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;

(2)若許愿瓶的進(jìn)價(jià)為6/個(gè),按照上述市場(chǎng)調(diào)查的銷(xiāo)售規(guī)律,求銷(xiāo)售利潤(rùn)w(元)與銷(xiāo)售單價(jià)x(元/個(gè))之間的函數(shù)關(guān)系式;

(3)在(2)的條件下,若許愿瓶的進(jìn)貨成本不超過(guò)900元,要想獲得最大的利潤(rùn),試確定這種許愿瓶的銷(xiāo)售單價(jià),并求出此時(shí)的最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,點(diǎn)D、E分別在AB、AC上,且CEBC,連接CD,將線(xiàn)段CD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°后得到CF,連接EF

1)求證:△BDC≌△EFC

2)若EFCD,求證:∠BDC90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】人們?cè)陂L(zhǎng)期的數(shù)學(xué)實(shí)踐中總結(jié)了許多解決數(shù)學(xué)問(wèn)題的方法,形成了許多光輝的數(shù)學(xué)想法,其中轉(zhuǎn)化思想是中學(xué)教學(xué)中最活躍,最實(shí)用,也是最重要的數(shù)學(xué)思想,例如將不規(guī)則圖形轉(zhuǎn)化為規(guī)則圖形就是研究圖形問(wèn)題比較常用的一種方法.

問(wèn)題提出:求邊長(zhǎng)分別為、、的三角形面積.

問(wèn)題解決:

在解答這個(gè)問(wèn)題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫(huà)出邊長(zhǎng)分別為

、的格點(diǎn)三角形(如圖),是角邊為12的直角三角形斜邊,是直角邊分別為13的直角三角形的斜邊,是直角邊分別為23的直角三角形斜邊,用一個(gè)大長(zhǎng)方形的面積減去三個(gè)直角三角形的面積,這樣不需求的高,而借用網(wǎng)格就能計(jì)算它的面積.

1)請(qǐng)直接寫(xiě)出圖①中的面積為____________.

2)類(lèi)比遷移:求邊長(zhǎng)分別為、的三角形面積(請(qǐng)利用圖②的正方形網(wǎng)格畫(huà)出相應(yīng)的,并求出它的面積)

3)思維拓展:求邊長(zhǎng)分別為,的三角形的面積

4)如圖(3),已知,以,為邊向外作正方形,正方形,連接,若,則六邊形 的面積是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A、B是兩個(gè)工廠,L1、L2是兩條公路,現(xiàn)要在這一地區(qū)建一加油站,要求加油站到A、B兩廠的路程相等,且到兩條路的距離相等,請(qǐng)用尺規(guī)作圖找出符合條件的點(diǎn)P

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小王是新星廠的一名工人,請(qǐng)你閱讀下列信息:

信息一:工人工作時(shí)間:每天上午800—1200,下午1400—1800,每月工作25天;

信息二:小王生產(chǎn)甲、乙兩種產(chǎn)品的件數(shù)與所用時(shí)間的關(guān)系見(jiàn)下表:

生產(chǎn)甲種產(chǎn)品數(shù)()

生產(chǎn)乙種產(chǎn)品數(shù)()

所用時(shí)間(分鐘)

10

10

350

30

20

850

信息三:按件計(jì)酬,每生產(chǎn)一件甲種產(chǎn)品得1.50元,每生產(chǎn)一件乙種產(chǎn)品得2.80元;

信息四:該廠工人每月收入由底薪和計(jì)酬工資兩部分構(gòu)成,小王每月的底薪為1900元.請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:

(1)小王每生產(chǎn)一件甲種產(chǎn)品和一件乙種產(chǎn)品分別需要多少分鐘;

(2)20181月工廠要求小王生產(chǎn)甲種產(chǎn)品的件數(shù)不少于60件,則小王該月收入最多是多少元?此時(shí)小王生產(chǎn)的甲、乙兩種產(chǎn)品分別是多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtAOB中,∠OAB=90°OA=AB,將RtAOB放置于直角坐標(biāo)系中,OBx軸上,點(diǎn)O是原點(diǎn),點(diǎn)A在第一象限.點(diǎn)A與點(diǎn)C關(guān)于x軸對(duì)稱(chēng),連結(jié)BCOC.雙曲線(xiàn) (x0)OA邊交于點(diǎn)D、與AB邊交于點(diǎn)E

(1)求點(diǎn)D的坐標(biāo);

(2)求證:四邊形ABCD是正方形;

(3)連結(jié)ACOB于點(diǎn)H,過(guò)點(diǎn)EEGAC于點(diǎn)G,交OA邊于點(diǎn)F,求四邊形OHGF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道:等腰三角形兩腰上的高相等.

1)請(qǐng)你寫(xiě)出它的逆命題:______

2)逆命題是真命題嗎?若是,請(qǐng)證明;若不是,請(qǐng)舉出反例(要求:畫(huà)出圖形,寫(xiě)出已知,求證和證明過(guò)程).

查看答案和解析>>

同步練習(xí)冊(cè)答案