【題目】如圖,直線AB、CD相交于點O,OM⊥AB.
(1)若∠1=∠2,求∠NOD.
(2)若∠1= ∠BOC,求∠AOC與∠MOD.
【答案】
(1)解:∵OM⊥AB,
∴∠AOM=∠1+∠AOC=90°,
∵∠1=∠2,
∴∠NOC=∠2+∠AOC=90°,
∴∠NOD=180°﹣∠NOC=180°﹣90°=90°;
(2)解:∵OM⊥AB,
∴∠AOM=∠BOM=90°,
∵∠1= ∠BOC,
∴∠BOC=∠1+90°=3∠1,
解得∠1=45°,
∠AOC=90°﹣∠1=90°﹣45°=45°,
∠MOD=180°﹣∠1=180°﹣45°=135°.
【解析】根據(jù)垂線的定義,角的運算,掌握圖形間角的關系得出答案.
【考點精析】本題主要考查了對頂角和鄰補角和垂線的性質的相關知識點,需要掌握兩直線相交形成的四個角中,每一個角的鄰補角有兩個,而對頂角只有一個;垂線的性質:1、過一點有且只有一條直線與己知直線垂直.2、垂線段最短才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AE=CF,∠AFD=∠CEB,那么添加下列一個條件后,仍無法判定△ADF≌△CBE的是( )
A.∠A=∠C
B.AD=CB
C.BE=DF
D.AD∥BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AB=3,AD=4,動點Q從點A出發(fā),以每秒1個單位的速度,沿AB向點B移動;同時點P從點B出發(fā),仍以每秒1個單位的速度,沿BC向點C移動,連接QP,QD,PD.若兩個點同時運動的時間為x秒(0<x≤3),解答下列問題:
(1)設△QPD的面積為S,用含x的函數(shù)關系式表示S;當x為何值時,S有最大值?并求出最小值;
(2)是否存在x的值,使得QP⊥DP?試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知Rt△ABC中,∠B=90°,AC=20,AB=10,P是邊AC上一點(不包括端點A、C),過點P作PE⊥BC于點E,過點E作EF∥AC,交AB于點F.設PC=x,PE=y.
(1)求y與x的函數(shù)關系式;
(2)是否存在點P使△PEF是Rt△?若存在,求此時的x的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系網(wǎng)格中,將△ABC進行位似變換得到△A1B1C1.
(1)△A1B1C1與△ABC的位似比是 ;
(2)畫出△A1B1C1關于y軸對稱的△A2B2C2;
(3)設點P(a,b)為△ABC內一點,則依上述兩次變換后,點P在△A2B2C2內的對應點P2的坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】足球比賽的積分規(guī)則:勝一場得3分,平一場得1分,負一場得0分.一個隊進行了14場比賽,其中負5場,共得19分,那么這個對共勝了( )場.
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】泰興市新區(qū)對曾濤路進行綠化,計劃把某一段公路的一側全部栽上桂花樹,要求路的兩端各栽一棵,并且每兩棵樹的間隔相等.如果每隔5米栽1棵,則樹苗缺21棵;如果每隔6米栽1棵,則樹苗正好用完.則原有樹苗( )棵.
A.100
B.105
C.106
D.111
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com