【題目】為響應(yīng)“綠色生活,美麗家園”號召,某社區(qū)計劃種植甲、乙兩種花卉來美化小區(qū)環(huán)境.若種植甲種花卉,乙種花卉,共需430元;種植甲種花卉,乙種花卉,共需260元.

1)求:該社區(qū)種植甲種花卉和種植乙種花卉各需多少元?

2)該社區(qū)準備種植兩種花卉共且費用不超過6300元,那么社區(qū)最多能種植乙種花卉多少平方米?

【答案】1)該社區(qū)種植甲種花卉80元,種植乙種花卉90元;(2)該社區(qū)最多能種植乙種花卉

【解析】

1)設(shè)該社區(qū)種植甲種花卉元,種植乙種花卉元,根據(jù)若種植甲種花卉,乙種花卉,共需430元;種植甲種花卉,乙種花卉,共需260,即可得出關(guān)于的二元一次方程組,解之即可得出結(jié)論;

2)設(shè)該社區(qū)種植乙種花卉,則種植甲種花卉,根據(jù)總費用種植甲種花卉的費用+種植乙種花卉的費用,結(jié)合總費用不超過6300元,即可得出關(guān)于的一元一次不等式,解之取其中的最大值即可得出結(jié)論.

1)設(shè)該社區(qū)種植甲種花卉元,種植乙種花卉元,

依題意,得:,

解得:

答:該社區(qū)種植甲種花卉80元,種植乙種花卉90元.

2)設(shè)該社區(qū)種植乙種花卉,則種植甲種花卉,

依題意,得:,

解得:

答:該社區(qū)最多能種植乙種花卉.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程

1x2+4x30

2xx+2)﹣2x0

3x26x40

4x2+x60

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰RtABC中,∠BAC90°,ABAC,BC4,點DAC邊上一動點,連接BD,以AD為直徑的圓交BD于點E,則線段CE長度的最小值為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是正方形ABCD的對角線BD上一點(P不與點BD重合),PEBC于點E,PFCD于點F,連接EF給出下列五個結(jié)論:APEFAPEF;僅有當DAP45°67.5°時,APD是等腰三角形;④∠PFEBAPPDEC.其中有正確有(  )個.

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(探究)如圖1,在等邊ABC中,AB4,點DE分別為邊BC、AB上的點,連結(jié)ADDE,若ADE60°,BD3,求BE的長.

(拓展)如圖2,在ABD中,AB4,點E為邊AB上的點,連結(jié)DE,若ADEABD45°,若DB3 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

(1)x24x20;    (2)x23x20;

(3)3x27x40.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AD12cmCD6cm,EAD上一點,且BEBC,CECD,則DE__cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小李從市場上買回一塊矩形鐵皮,他將此矩形鐵皮的四個角各剪去一個邊長為1米的正方形后,剩下的部分剛好能圍成一個容積為35 m3的無蓋長方體箱子,且此長方體箱子的底面長比寬多2m,現(xiàn)己知購買這種鐵皮每平方米需30元錢,問小李購回這張矩形鐵皮共花了多少元錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+ca0)的圖象過點(-2,0),對稱軸為直線x=1.有以下結(jié)論:①abc>0;②8a+c>0;③若Ax1m),Bx2,m)是拋物線上的兩點,當x=x1+x2時,y=c;④若方程ax+2)(4-x=-2的兩根為x1,x2,且x1<x2,則-2x1<x2<4.

其中結(jié)論正確的有(

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習(xí)冊答案