【題目】如圖,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位,每個(gè)小方格的頂點(diǎn)叫格點(diǎn).

1)畫出ABC向左平移2個(gè)單位,再向上平移3個(gè)單位后得到的A1B1C1;

2)圖中ACA1C1的關(guān)系是:   ;

3)畫出ABCBC邊上的中線AD;

4ACD的面積為   

【答案】(1)見(jiàn)解析;(2)平行且相等;(3)見(jiàn)解析;(44

【解析】

(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C向左平移2個(gè)單位,再向上平移3個(gè)單位后的對(duì)應(yīng)點(diǎn)A1、B1、C1的位置,然后順次連接即可;(2)根據(jù)平移的性質(zhì)解答;(3)根據(jù)網(wǎng)格結(jié)構(gòu)確定出BC的中點(diǎn)D,然后連接AD即可;(4)利用△ACD所在的矩形的面積減去四周兩個(gè)直角三角形的面積,列式計(jì)算即可得解.

(1) 圖中A1B1C1即為所求;

(2) ACA1C1的關(guān)系是:平行且相等;

(3)圖中AD即為所求;

(4)S ACD=4×6-×4×6-×4×4=24-12-8=4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)重要的著作之一,奠定了中國(guó)傳統(tǒng)數(shù)學(xué)的基本框架.其中第九卷《勾股》主要講述了以測(cè)量問(wèn)題為中心的直角三角形三邊互求,之中記載了一道有趣的“引葭赴岸”問(wèn)題:今有池方一丈,葭生其中央,出水一尺引葭赴岸,適與岸齊.問(wèn)水深、葭長(zhǎng)各幾何?”

譯文:“今有正方形水池邊長(zhǎng)為1丈,有棵蘆葦生長(zhǎng)在它長(zhǎng)出水面的部分為1將蘆葦?shù)闹醒,向池岸牽引,恰好與水岸齊接問(wèn)水深,蘆葦?shù)拈L(zhǎng)度分別是多少尺?”(備注:1=10)

如果設(shè)水深為,那么蘆葦長(zhǎng)用含的代數(shù)式可表示為_______尺,根據(jù)題意,可列方程為______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸上點(diǎn)A對(duì)應(yīng)的數(shù)為a,點(diǎn)B對(duì)應(yīng)的數(shù)為b,且多項(xiàng)式﹣x2yxy22xy+5的次數(shù)為a,常數(shù)項(xiàng)為b

1)直接寫出ab的值;

2)數(shù)軸上點(diǎn)A、B之間有一動(dòng)點(diǎn)P(不與A、B重合),若點(diǎn)P對(duì)應(yīng)的數(shù)為x,試化簡(jiǎn):|2x+6|+4|x5||6x|+|3x9|

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,ABCD,BCCD,E是AD的中點(diǎn),連結(jié)BE并延長(zhǎng)交CD的延長(zhǎng)線于點(diǎn)F.

(1)請(qǐng)連結(jié)AF、BD,試判斷四邊形ABDF是何種特殊四邊形,并說(shuō)明理由.

(2)若AB=4,BC=5,CD=6,求BCF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是(  )

A. 當(dāng)ABBC時(shí),它是菱形 B. 當(dāng)ACBD時(shí),它是菱形

C. 當(dāng)∠ABC90°時(shí),它是矩形 D. 當(dāng)ACBD時(shí),它是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AB=CD,對(duì)角線AC,BD相交于點(diǎn)O,AEBD于點(diǎn)E,CFBD于點(diǎn)F,連接AF,CE,若DE=BF,則下列結(jié)論:CF=AE;OE=OF;四邊形ABCD是平行四邊形;圖中共有四對(duì)全等三角形.其中正確結(jié)論的個(gè)數(shù)是

A.4 B.3 C2 D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(給出定義)

數(shù)軸上順次有三點(diǎn)A、CB,若點(diǎn)C到點(diǎn)A的距離是點(diǎn)C到點(diǎn)B的距離的3,我們就稱點(diǎn)C(A、B)夢(mèng)想點(diǎn)例如:圖①中,點(diǎn)A、B表示的數(shù)分別為-2、2,表示數(shù)1的點(diǎn)C(A、B)夢(mèng)想點(diǎn);圖②中,點(diǎn)A、B表示對(duì)的數(shù)分別為-22,表示-1的點(diǎn)C(B、A)夢(mèng)想點(diǎn).

(解決問(wèn)題)

(1)若數(shù)軸上M、N兩點(diǎn)所表示的數(shù)分別為滿足求出(M、N)夢(mèng)想點(diǎn)表示的數(shù);

(2)如圖③,在數(shù)軸上點(diǎn)A、B表示的數(shù)分別為-1565,點(diǎn)P從點(diǎn)A出發(fā)沿?cái)?shù)軸向右運(yùn)動(dòng):

①若點(diǎn)P運(yùn)動(dòng)到點(diǎn)B停止,則當(dāng)PA、B中恰好有一個(gè)點(diǎn)為其余兩個(gè)點(diǎn)的夢(mèng)想點(diǎn)時(shí),求這個(gè)點(diǎn)表示的數(shù);

②若點(diǎn)P運(yùn)動(dòng)到B,繼續(xù)沿?cái)?shù)軸向右運(yùn)動(dòng)的過(guò)程中,是否還存在點(diǎn)P、A、B中恰好有一個(gè)點(diǎn)為其余兩點(diǎn)的夢(mèng)想點(diǎn)的情況?若存在,請(qǐng)直接寫出此時(shí)以PA、PB為鄰邊長(zhǎng)的長(zhǎng)方形的周長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線AB、CD相交于點(diǎn)O,OE平分∠BOD.OF⊥CD,垂足為O,若∠EOF=54°.

(1)求∠AOC的度數(shù);

(2)作射線OG⊥OE,試求出∠AOG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB=30°,OC為∠AOB內(nèi)部一條射線,點(diǎn)P為射線OC上一點(diǎn),OP=4,點(diǎn)M、N分別為OA、OB邊上動(dòng)點(diǎn),則△MNP周長(zhǎng)的最小值為( )

A. 2 B. 4 C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案