【題目】數(shù)學課上,李老師出示了如下框中的題目.
小敏與同桌小聰討論后,進行了如下解答:
(1)特殊情況探索結(jié)論
當點E為AB的中點時,如圖1,確定線段AE與的DB大小關(guān)系.請你直接寫出結(jié)論:AE__________DB(填“>”,“<”或“=”).
(2)特例啟發(fā),解答題目
解:題目中,AE與DB的大小關(guān)系是:AE__________DB(填“>”,“<”或“=”).理由如下:
如圖2,過點E作EF∥BC,交AC于點F,(請你完成以下解答過程)
(3)拓展結(jié)論,設(shè)計新題
在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若△ABC的邊長為1,AE=2,求CD的長.
【答案】(1)=;(2)=,證明見解析;(3)3或1.
【解析】
試題分析:本題主要考查全等三角形的判定和性質(zhì)及等邊三角形的性質(zhì)和判定,利用全等得到BD=EF,再找EF和AE的關(guān)系是解題的關(guān)鍵.
(1)當E為中點時,過E作EF∥BC交AC于點F,則可證明△BDE≌△FEC,可得到AE=DB;
(2)類似(1)過E作EF∥BC交AC于點F,可利用AAS證明△BDE≌△FEC,可得BD=EF,再證明△AEF是等邊三角形,可得到AE=EF,可得AE=DB;
(3)分點E在AB上和在BA的延長線上,類似(2)證得全等,再利用平行得到.
試題解析:
(1)答案為:=.
(2)答案為:=.
在等邊△ABC中,∠ABC=∠ACB=∠BAC=60°,AB=BC=AC,
∵EF∥BC,
∴∠AEF=∠ABC,∠AFE=∠ACB,
∴∠AEF=∠AFE=∠BAC=60°,
∴AE=AF=EF,
∴AB﹣AE=AC﹣AF,
即BE=CF,
∵∠ABC=∠EDB+∠BED,∠ACB=∠ECB+∠FCE,
∵ED=EC,
∴∠EDB=∠ECB,
∵∠EBC=∠EDB+∠BED,∠ACB=∠ECB+∠FCE,
∴∠BED=∠FCE,
在△DBE和△EFC中,
,
∴△DBE≌△EFC(SAS),
∴DB=EF,
∴AE=BD.
(3)解:分為四種情況:
如圖1:
∵AB=AC=1,AE=2,
∴B是AE的中點,
∵△ABC是等邊三角形,
∴AB=AC=BC=1,△ACE是直角三角形(根據(jù)直角三角形斜邊的中線等于斜邊的一半),
∴∠ACE=90°,∠AEC=30°,
∴∠D=∠ECB=∠BEC=30°,∠DBE=∠ABC=60°,
∴∠DEB=180°﹣30°﹣60°=90°,
即△DEB是直角三角形.
∴BD=2BE=2(30°所對的直角邊等于斜邊的一半),
即CD=1+2=3.
如圖2,
過A作AN⊥BC于N,過E作EM⊥CD于M,
∵等邊三角形ABC,EC=ED,
∴BN=CN=BC=,CM=MD=CD,AN∥EM,
∴△BAN∽△BEM,
∴=,
∵△ABC邊長是1,AE=2,
∴=,
∴MN=1,
∴CM=MN﹣CN=1﹣=,
∴CD=2CM=1;
如圖3,∵∠ECD>∠EBC(∠EBC=120°),而∠ECD不能大于120°,否則△EDC不符合三角形內(nèi)角和定理,
∴此時不存在EC=ED;
如圖4,
∵∠EDC<∠ABC,∠ECB>∠ACB,
又∵∠ABC=∠ACB=60°,
∴∠ECD>∠EDC,
即此時ED≠EC,
∴此時情況不存在,
答:CD的長是3或1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC和△ADE中,點E在BC邊上,∠BAC=∠DAE,∠B=∠D, AB=AD.
(1)試說明△ABC≌△ADE;
(2)如果∠AEC=75°,將△ADE繞點A旋轉(zhuǎn)一個銳角后與△ABC重合,求這個旋轉(zhuǎn)角的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在(1) (2) (3) (4) 中,________是方程7x-3y=2的解;________是方程2x+y=8的解;________是方程組的解.(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小李制作了一張△ABC紙片,點D、E分別在邊AB、AC上,現(xiàn)將△ABC沿著DE折疊壓平,使點A落在點A′位置.若∠A=75°,則∠1+∠2= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B、C、D四個車站的位置如圖所示,A、B兩站之間的距離AB=a﹣b,B、C兩站之間的距離BC=2a﹣b,B、D兩站之間的距離BD=a﹣2b﹣1.求:
(1)A、C兩站之間的距離AC;
(2)若A、C兩站之間的距離AC=180km,求C、D兩站之間的距離CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,西安路與南京路平行,并且與八一街垂直,曙光路與環(huán)城路垂直.如果小明站在南京路與八一街的交叉口,準備去書店,按圖中的街道行走,最近的路程約為( )
A.600m
B.500m
C.400m
D.300m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A(1,3)、點B(m,1)是一次函數(shù)的圖像上的兩點,一次函數(shù)圖像與x軸交于點D.
(1)b = ,m = ;
(2)過點B作直線l垂直于x軸,點E是點D關(guān)于直線l的對稱點,點C是點A關(guān)于原點的對稱點.試判斷點B、E、C是否在同一條直線上,并說明理由.
(3)連結(jié)AO、BO,求△AOB的面積;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的口袋中有3個分別標有數(shù)字﹣1、1、2的小球,它們除標的數(shù)字不同外無其他區(qū)別.
(1)隨機地從口袋中取出一小球,求取出的小球上標的數(shù)字為負數(shù)的概率;
(2)隨機地從口袋中取出一小球,放回后再取出第二個小球,求兩次取出的數(shù)字的和等于0的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com