對(duì)于任意三角形的高,下列說法不正確的是(  )
分析:根據(jù)三角形的高的概念,通過具體作高,發(fā)現(xiàn):任意一個(gè)三角形都有三條高,其中銳角三角形的三條高都在三角形的內(nèi)部;直角三角形有兩條高即三角形的兩條直角邊,一條在內(nèi)部;鈍角三角形有兩條高在三角形的外部,一條在內(nèi)部,據(jù)此解答即可.
解答:解:A、直角三角形有三條高,說法錯(cuò)誤,故本選項(xiàng)符合題意;
B、銳角三角形有三條高,說法正確,故本選項(xiàng)不符合題意;
C、任意三角形都有三條高,說法正確,故本選項(xiàng)不符合題意;
D、鈍角三角形有兩條高在三角形的外部,說法正確,故本選項(xiàng)不符合題意;
故選A.
點(diǎn)評(píng):本題考查了三角形的高,注意不同形狀的三角形的高的位置.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料,按要求回答問題.
(1)觀察下面兩塊三角尺,它們有一個(gè)共同的性質(zhì):∠A=2∠B,我們由此出發(fā)來進(jìn)行思考.
在圖(1)中作斜邊上的高CD,由于∠B=30°,可知c=2b,∠ACD=30°,于是AD=
b
2
,BD=c-
b
2
,由于△CDB∽△ACB,可知,即a2=c•BD.同理b2=c•AD,于是a2-b2=c(BD-AD)=c(c-b)=bc.對(duì)于圖(2),由勾股定理有a2=b2+c2,由于b=c,故也有a2-b2=bc.
在△ABC中,如果一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的2倍,我們稱這樣的三角形為倍角三角形,兩塊三角尺都是特殊的倍角三角形,對(duì)于任意倍角三角形,上面的結(jié)論仍然成立嗎?我們暫時(shí)把設(shè)想作為一種猜測(cè):
如圖(3),在△ABC中,若∠CAB=2∠ABC,則a2-b2=bc.
在上述由三角尺的性質(zhì)到“猜測(cè)”這一認(rèn)識(shí)過程中,用到了下列四種數(shù)學(xué)思想方法中的哪一種選出一個(gè)正確的并將其序號(hào)填在括號(hào)內(nèi)( 。
①分類的思想方法②轉(zhuǎn)化的思想方法③由特殊到一般的思想方法④精英家教網(wǎng)數(shù)形結(jié)合的思想方法
(2)這個(gè)猜測(cè)是否正確,請(qǐng)證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年浙教版初中數(shù)學(xué)七年級(jí)下1.3三角形的高練習(xí)卷(解析版) 題型:選擇題

對(duì)于任意三角形的高,下列說法不正確的是(   )

A.銳角三角形有三條高

B.直角三角形只有一條高

C.鈍角三角形有兩條高在三角形的外部

D.任意三角形都有三條高

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

對(duì)于任意三角形的高,下列說法不正確的是


  1. A.
    銳角三角形有三條高
  2. B.
    直角三角形只有一條高
  3. C.
    鈍角三角形有兩條高在三角形的外部
  4. D.
    任意三角形都有三條高

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀下列材料,按要求回答問題.
(1)觀察下面兩塊三角尺,它們有一個(gè)共同的性質(zhì):∠A=2∠B,我們由此出發(fā)來進(jìn)行思考.
在圖(1)中作斜邊上的高CD,由于∠B=30°,可知c=2b,∠ACD=30°,于是AD=數(shù)學(xué)公式,BD=c-數(shù)學(xué)公式,由于△CDB∽△ACB,可知,即a2=c•BD.同理b2=c•AD,于是a2-b2=c(BD-AD)=c(c-b)=bc.對(duì)于圖(2),由勾股定理有a2=b2+c2,由于b=c,故也有a2-b2=bc.
在△ABC中,如果一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的2倍,我們稱這樣的三角形為倍角三角形,兩塊三角尺都是特殊的倍角三角形,對(duì)于任意倍角三角形,上面的結(jié)論仍然成立嗎?我們暫時(shí)把設(shè)想作為一種猜測(cè):
如圖(3),在△ABC中,若∠CAB=2∠ABC,則a2-b2=bc.
在上述由三角尺的性質(zhì)到“猜測(cè)”這一認(rèn)識(shí)過程中,用到了下列四種數(shù)學(xué)思想方法中的哪一種選出一個(gè)正確的并將其序號(hào)填在括號(hào)內(nèi)
①分類的思想方法②轉(zhuǎn)化的思想方法③由特殊到一般的思想方法④數(shù)形結(jié)合的思想方法
(2)這個(gè)猜測(cè)是否正確,請(qǐng)證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案